placeholder

Juan

Hinestroza

Associate Professor of Fiber Science
135 Human Ecology Building (HEB)
Ithaca, New York
Fiber Science & Apparel Design
Phone

Biography

 

 

Detailed information about Professor Hinestroza and his research group is available at: http://nanotextiles.human.cornell.edu/

Juan P. Hinestroza, a U.S. Fulbright Scholar and a PMP®, is a tenured Associate Professor of Fiber Science and directs The Textiles Nanotechnology Laboratory at the College of Human Ecology of Cornell University in Ithaca, NY. Professor Hinestroza obtained a Ph.D. from the Department of Chemical and Biomolecular Engineering at Tulane University and B.Sc. in Chemical Engineering from Universidad Industrial de Santander. Prior to pursuing doctoral studies, Professor Hinestroza worked as a process control engineer for The Dow Chemical Company, he is the co-founder of 3 start-up companies, and has served as consultant to major Fortune 50 corporations in the field of smart and interactive textiles and fibers.

Professor Hinestroza works on understanding fundamental phenomena at the nanoscale that are of relevance to Fiber and Polymer Science. Hinestroza has received over 8.4 MM USD in research funding (Federal and State agencies as well as Industrial Consortiums) for his pioneering work in exploring new pathways for creating multifunctional fibers via manipulation of nanoscale phenomena.

Professor Hinestroza has been the recipient of a myriad of awards including the National Science Foundation CAREER Award, the Young Investigator Award from NYSTAR and the Educator of the Year Award from the Society  of  Professional Hispanic Engineers, The Humanitarian Award from the National Textile Center and the Academic Innovation Award from Cornell Class of 72. Professor Hinestroza has delivered invited lectures worldwide at Universities and Research Centers in Argentina, Australia,  Austria,  Brazil, Canada, Chile, China, Colombia, Costa Rica, Croatia, Czech Republic, Finland, France, Germany, Guatemala, Honduras, Hungary, India, Israel, Italy, Japan, Mexico, Morocco, New Zealand,  Peru,  Phillipines,  Portugal, Puerto Rico, Romania, Russian Federation, Singapore,  Slovenia,  South Korea,  Spain,  Switzerland,  Taiwan,  Thailand,  The Netherlands, Turkey, United Arab Emirates, United Kingdom and Vietnam.  In addition, Professor Hinestroza has received visiting scientist fellowships from The Chubu Foundation for Science and Technology in Japan, The National Council for Scientific and Technological Development in Brazil, The Swiss National Science Foundation in Switzerland and the Tote Board in Singapore.

Professor Hinestroza’s scientific work has been featured in Nature Nanotechnology, MRS Bulletin, Materials Today, C&E News, National Geographic, ASEE Prism as well as mainstream media outlets such as CNN, Wired, TechReview, The Guardian, Popular Science, ABC News, NYTimes, Reuters, PBS, NPR and BBC.   In addition to his scientific endeavors, Professor Hinestroza and his research group are actively involved in community outreach activities aimed at increasing the number of members from underrepresented minority groups in Science, Technology, Engineering and Mathematics as well as engaging senior citizens in collaborative and inter-generational learning experiences.

The main focus of the Hinestroza Research Group is to explore the interface between the technologically established and mature field of textile science with the emerging and revolutionary field of nanoscale science. The field of textiles was the first beneficiary of the scientific developments from the 18th century's industrial revolution while the nanotechnology revolution emerged the end of the 20th century. Our research group aims at merging two hundred years of innovation history.

We believe that this unusual combination, between an established and an emerging scientific field, can provide unique scientific platforms that take advantage of the ability of nanoscale science for controlling the synthesis of materials  with the time-tested capabilities of textile and fiber manufacturing.

In order to explore and understand nanoscale phenomena of relevance to fiber science we decided to pursue a three-pronged approach: The first branch is  aimed at modifying the properties of existing textile products, specifically natural fibers, using nanomaterials. The second approach is aimed at creating novel nanofiber based materials by taking advantage of unique self and directed assembly phenomena. The third effort is aimed at developing metrology and computer simulation tools to better understand traditional issues in textile processing such as friction and electrostatic charging whose influence is magnified at the nanoscale.

These three efforts are highly complementary and when combined they are expected to provide a more comprehensive understanding of nanoscale phenomena relevant fiber science.

82

Kim. M., Otal, E., Hinestroza, JP., Cellulose meets reticular chemistry: interactions between cellulosic substrates and metal–organic frameworks, Cellulose (2019), 1-15

81

Promphet, N., Rattanawaleedirojn, P., Siralertmukul, K., Soatthiyanon, N., Potiyaraj, P., Thanawattano, C., Hinestroza, JP, Rodthongkum, N. Non-invasive textile based colorimetric sensor for the simultaneous detection of sweat pH and lactate, Talanta (2019), 15, 192, 424-430

80

Sanchez-Botero, L,  Dimov, AV, Li, R., Smilgies, DM, Hinestroza, JP, In Situ and Real-Time Studies, via Synchrotron X-ray Scattering, of the Orientational Order of Cellulose Nanocrystals during Solution Shearing , Langmuir (2018) 34 (18), 5263-5272

79

Yu,Q.,  Kong, X., Ma, Y.,  Wang, R., Liu,Q., Hinestroza,JP, Wang, AX, Vuorinen, T. Multi-functional regenerated cellulose fibers decorated with plasmonic Au nanoparticles for colorimetry and SERS assays, Cellulose (2018).  25, 10, 6041-6053

78

Rojas, S., Duarte, D., Mosquera, S., Salcedo, F., Hinestroza, JP, Husserl, J., Enhanced biosorption of Cr(VI) using cotton fibers coated with chitosan – role of ester bonds, Water Science & Technology (2018), DOI: 10.2166/wst.2018.284

77

Patino-Ruiz, D., Sanchez-Botero, L., Hinestroza, JP., Herrera, A., Modification of Cotton Fibers with Magnetite and Magnetic Core?Shell Mesoporous Silica Nanoparticles, Physica Status Solidi (a) (2018). DOI: 10.1002/pssa.201800266

76

Heinzel, T., Hinestroza, JP,  Revolutionary textiles: a philosophical inquiry on electronic and reactive textiles, Design Issues (2018) In- press

75

Schelling, M., Otal. E., Kim, M., Hinestroza, JP., Decomposition of acetaminophen using a natural cellulosic substrate decorated with a water-stable metal-organic framework, Bioengineering (2018), 5,1,1-14

74

Morales-Luckie, R., Gama-Lara, SA., Garcia-Orozco, I., Hinestroza, JP., Argueta-Figueroa, L., Synthesis, Characterization and Catalytic Activity of Platinum Nanoparticles on Bovine Bone Powder - A novel support, Journal of Nanomaterials (2018) doi:10.1155/2018/6482186

73

Zhu, L., Wang, X., Hinestroza, JP, Naebe, M., Determination of the porosity in a bifacial fabric using micro-computed tomography and three-dimensional reconstruction, Textile Research Journal (2018) 88, 11,1263-1277  

72

Sanchez-Botero, L. Herrera, AP., Hinestroza, JP., Oriented Growth of α-MnO2 Nanorods Using Natural Extracts from Grape Stems and Apple Peels, Nanomaterials (2017), 7,5, 117

71

Cherukupally,P., Acosta,EJ., Hinestroza, JP., Bilton, AM., Park, CB., Acid–Base Polymeric Foams for the Adsorption of Micro-oil Droplets from Industrial Effluents, Environmental Science & Technology (2017), 51,15, 8552-8560

70

Carreño, A., Schott, E., Zarate, X., Manriquez, JM., Vega, JC., Mardones, M., Cowley, AH., Chavez,I., Hinestroza, JP., Arratia-Perez, R. DFT studies on coordination models for adsorption essays of Cu (II) and Ni (II) solutions in modified silica gel with iminodiacetic groups, Chemical Papers (2017), 6,1,1-12

69

Alzate-Sanchez, D.M., Smith, Brian J., Alsbaiee, A., Hinestroza, JP., Dichtel, W., Cotton Fabric Functionalized with a β-Cyclodextrin Polymer Captures Organic Pollutants from Contaminated Air and Water, Chemistry of Materials (2016) 28 (22), 8340-8346

68

Otal, E., Kim, ML., Calvo, ME., Karvonen,L., Fabregas, IO., Sierra, CA., Hinestroza, JP., A panchromatic modification of Metal-Organic Frameworks’ light absorption spectra. Chemical Communications (2016) 52 (40), 6665-6668

67

Ospina-Orejarena, A., Vera-Graziano, R., Castillo-Ortega, M, Hinestroza,JP.,  Rodriguez-Gonzalez, M., Palomares-Aguilera,L.,  Morales-Motezuma, M.,  Maciel-Cerda, A., Grafting Collagen on Poly (Lactic Acid) by a Simple Route to Produce Electrospun Scaffolds, and Their Cell Adhesion Evaluation  Tissue Engineering and Regenerative Medicine, (2016) 13 (4), 375-387

66

Morales-Luckie, R., Lopezfuentes-Ruiz, AA., Olea-Mejía, O., Argueta-Figueroa,  L., Sanchez-Mendieta, V., Brostow, W., Hinestroza, JP. Synthesis of silver nanoparticles using aqueous extracts of Heterotheca inuloides as reducing agent and natural fibers as templates: Agave lechuguilla and silk, Materials Science and Engineering: C (2016), 60, 429-436

65

Yetisen, A., Qu, H., Manbachi, A., Butt, H., Dokmeci, M., Hinestroza, JP., Skorobogatiy, M., Khademhosseini, A., Yun, SH, ACS Nano (2016), 10,3, 3042-3068

64

Agudelo, N., Hinestroza, JP., Husserl, J., Removal of sodium and chloride ions from aqueous solutions using fique fibers (Furcraea spp.), Water Science & Technology (2016), 73,5,1197-11201

63

Casanas Pimentel, RG., Robles Botero, V., San Martin Martinez, E., Gomez Garcia, C., Hinestroza, JP., Soybean agglutinin-conjugated silver nanoparticles nanocarriers for the treatment of breast cancer cells Journal of Biomaterials Science Polymer Edition (2016), 27,3, 218-234

62

Kimura, M., Shinohara, Y., Takizawa, J., Ren, S., Sagisaka, K., Lin, Y., Hattori, Y., Hinestroza, JP., Versatile Molding Process for Tough Cellulose Hydrogel Materials, Scientific Reports (2015), 5, 16266 1-8

61

Kong, XM, Reza, M., Ma, Y., Hinestroza, JP, Ahvenniemi, E., Vuorinen, T., Assembly of metal nanoparticles on regenerated fibers from wood sawdust and de-inked pulp: flexible substrates for surface enhanced Raman scattering (SERS) applications., Cellulose (2015) , 22(6) 3645-3655

60

Ovalle-Serrano, S., Carrillo, V., Blanco-Tirado, C., Hinestroza, JP., Combariza, M.Y., Controlled synthesis of ZnO particles on the surface of natural cellulosic fibers: effect of concentration, heating and sonication., Cellulose (2015), 19(6) 1933-1943

59

Ozer, R., Hinestroza, JP., One-step growth of isoreticular luminescent metal-organic frameworks on cotton fibers,  RSC Advances (2015), 5 ,20, 15198-15204.

58

Rodriguez, H., Hinestroza, JP., Ochoa-Puentes, C., Sierra, C. Soto, C. Antibacterial activity against Escherichia coli of Cu?BTC (MOF?199) metal?organic framework immobilized onto cellulosic fibers Journal of Applied Polymer Science (2014), 131,19, 40815-40820

57

Zhukovskyi, M., Sanchez-Botero,LM,  McDonald, MP,  Hinestroza, JP.,  Kuno, M. Nanowire-functionalized cotton textiles, ACS Applied Materials and Interfaces (2014), 6, 4, 2262-2269

56

Lange,L., Ochanda, F., Obendorf, SK, Hinestroza, JP., CuBTC Metal-organic Frameworks Enmeshed in Polyacrylonitrile Fibrous Membrane Remove Methyl Parathion from Solutions Fibers and Polymers (2014), 15,2, 200-207

55

Luz, Priscilla, Silva, M., Hinestroza, JP., Curcumin-Loaded Biodegradable Electrospun Fibers: Preparation, Characterization and Differences on the Fibers Morphology, International Journal of Polymer Analysis and Characterization (2013), 18-7, 534-544

54

Chacon-Patino, M., Blanco-Tirado, C., Hinestroza, JP., Combariza, MY., Biocomposite of  nanostructured MnO2 and Fique fibers for efficient dye degradation Green Chemistry (2013), 15, 2920-2928.

53

Alzate-Sanchez, D., Hinestroza, JP., Rodríguez, R., Sierra-Avila, C., Synthesis of the novel (E,E)-2,5-dimethoxy-1,4-bis[2-(4-ethylcarboxilatestyril)] benzene by the Heck reaction, Synthetic Communications (2013), 43,17,2280-2285

52

Song, J., Wang, C., Hinestroza,JP.,  Electrostatic assembly of core-corona silica nanoparticles onto cotton fibers, Cellulose (2013), 20,4, 1727-1736

51

Nolasco-Arizmendi, V., Morales-Luckie,R., Sánchez-Mendieta, V., Hinestroza, JP., Castro-Longoria, E., Vilchis-Nestor, AR, Formation of silk-gold nanocomposite fabric using grapefruit aqueous extract,  Textile Research Journal (2013), 83, 12, 1229-1235.

50

Xiang, C., Taylor, A., Hinestroza, JP, Frey MW., Controlled release of nonionic compounds from poly(lactic acid)/cellulose nanocrystal  nanocomposite fibers, Journal of Applied Polymer Science (2013), 127,1, 79-86

49

Jiri, C. , Hinestroza JP., Lukas, D., Production of Poly(vinylalcohol) Nanoyarns Using a Special Saw-like Collector, Fibers & Textiles of Eastern Europe (2013), 2,98,28-31

48

Bonilla, R., Montenegro,C.,  Ávila, A., Hinestroza,JP., Direct observation of spatial distribution of charge of an electret polypropylene fiber using Electrostatic Force Microscopy, Journal of Microscopy (2012), 248, 3, 266-270

47

Mendoza-Bello, S., Morales-Luckie, RA., Flores-Santos, L., Hinestroza, JP., Sanchez-Mendieta, V., Size-controlled synthesis of Fe2O3 and Fe3O4 nanoparticles onto zeolite by means of a modified activated-coprecipitation method: effect of theHCl concentration during the activation, Journal of Nanoparticle Research (2012),14,11, 1242-1251

46

Park, G., Jung, YL, Lee, GW, Hinestroza, JP., Jeong, Y., Carbon Nanotube/Poly(vinyl alcohol) Fibers with a Sheath-core Structure Prepared by Wet Spinning, Fibers and Polymers (2012), 13,7,874-879

45

Castellanos, L., Blanco-Tirado C., Hinestroza, JP., Combariza, M.Y., In-situ synthesis of gold nanoparticles using Fique natural fibers as template, Cellulose (2012), 19,6,1933-1943

44

Becerril-Juárez, I., Morales-Luckie, R., Ureña-Nuñez, F., Arenas-Alatorre, J., Hinestroza, JP., Sánchez-Mendieta, V., Silver micro-, submicro- and nano-crystals using bovine bone as template. Formation of a silver/bovine bone composite (2012), Materials Letters, 85, 157-160

43

Silva da Pinto, M., Sierra-Avila, C., Hinestroza, JP., In situ synthesis of a Cu-BTC metal–organic framework (MOF 199) onto cellulosic fibrous substrates: cotton, (2012), Cellulose, 19,5, 1771-1779

42

Gangadharan, S., Kuznetsov, A., Zhu, H., Hinestroza, JP., Jasper, W.,  Modeling of Cross-Flow Across an Electrostatically Charged Monolith Filter, Particulate Science and Technology, (2012), 30, 5, 461-473

41

Barrera C, Herrera AP, Bezares N, Fachini E, Olayo-Valles R, Hinestroza JP, Rinaldi C., Effect of poly(ethylene oxide)-silane graft molecular weight on the colloidal properties of iron oxide nanoparticles for biomedical applications, J Colloid Interface Science (2012), 377, 40-50

40

Dabirian, F.,  Hosseini, S.A., Hinestroza, JP,  Abuzade, RA.,  Conformal coating of yarns and wires with electrospun Nanofibers, Polymer Engineering and Science (2012), 52,8, 1724-1732

39

Y. Li, Rojas, OJ, Hinestroza, JP., Boundary Lubrication of PEO-PPO-PEO Triblock Copolymer Physisorbed on Polypropylene, Polyethylene, and Cellulose Surfaces, Ind. Eng. Chem. Res., (2012), 51 ,7, 2931–2940

38

Song, J., Birbach, N., Hinestroza, JP., Deposition of silver nanoparticles on cellulosic fibers via stabilization of carboxymethyl groups, Cellulose, (2012), 19, 2, 411-424

37

Yu J-Y, Zheng N, Mane G, Min KA, Hinestroza JP, Zhu, H., Stringer, K., Rosania, G.,  A Cell-based Computational Modeling Approach for Developing Site-Directed Molecular Probes. PLoS Comput Biol (2012), 8,2: e1002378.

36

Mattana, G., Cosseddu, P., Fraboni, B., Malliaras, G., Hinestroza, JP., Bonfiglio, A. Organic Electronics on natural cotton fibers, Organic Electronics, (2011) 12, 2033-2029

35

Li, Y, Liu, H., Song, J., Rojas, OJ., Hinestroza, JP, Adsorption and Association of a Symmetric PEO-PPO-PEO Triblock Copolymer on Polypropylene, Polyethylene, and Cellulose Surfaces, ACS Appl. Mater. Interfaces, (2011),3,7, 2349-2357

34

Dabirian, F., Hosseini Ravandi, S.A., Hashemi Sanatgar, R.,  Hinestroza, JP., Manufacturing of twisted continuous PAN nanofiber yarn by electrospinning process,  Fibers and Polymers (2011) 12,5, 610-615

33

Kim, J., Hinestroza, J., Jasper, W., Barber, R., Application of electrostatic force microscopy on characterizing an electret fiber: Effect of tip to specimen distance on phase shift , Fibers and Polymers (2011), 12,1,89-94

Professor Hinestroza is a member of the Division of Cellulose and Renewable Materials of the American Chemical Society. Hinestroza is also a member of the Project Management Institute, The Society of Materials Research MRS, The American Institute of Chemical Engineers AICHE, The Fiber Society and The Society of Hispanic Professional Engineers SHPE.

FSAD 4660 : Textiles Apparel Innovation
FSAD 3000 : Introduction to Fiber Science & Apparel Design Research
FSAD 6160 : Rheology of Solids
FSAD 6390 : Mechanics of Fibrous Systems

Ph.D. Chemical and Biomolecular Engineering, Tulane University 2002
B.Sc. Chemical Engineering, Universidad Industrial de Santander 1995

Professor Hinestroza is a Cornell University Faculty Senator and a member of the grievance committee of Cornell's College of Human Ecology.