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Research on Semantic Representations

• Cognitive Science:
– How is information represented in semantic memory?
– How do we retrieve relevant semantic memories?

• Text-mining/ Information Retrieval/ Machine Learning:
– How can computers represent semantic information?
– How can computers automatically extract semantic 

information from text?
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New approach: 
Probabilistic Topic Models



Topic Models

• Widely used model in machine learning and text mining

– aka Latent Dirichlet Allocation (LDA) and pLSI

• Automatic and unsupervised
 

extraction of semantic themes 
from large text collections.

• Essentially a Bayesian analysis of co-occurrence statistics. 
How are words correlated with other words across contexts?



Topics provide quick summary of content

• What is in this corpus? 

• What is in this document?

• What does this person/group of people write about? 

• What are the topical trends over time?



Example: 
Topic Analysis of Search Queries



AOL dataset

• Dataset:

- 20,000,000+ web queries 

- 650,000+ users 

• Users were given “anonymous” user-id

• Publicly available (…but controversial) 



Example query log from user #2178
ID Query Date/Time URL clicked

2178 dog eats uncooked pasta 2006-05-26 15:31:56
2178 inducing dog vomiting 2006-05-26 15:32:46 http://www.twodogpress.com
2178 inducing dog vomiting 2006-05-26 15:32:46 http://www.canismajor.com
2178 inducing dog vomiting 2006-05-26 15:32:46 http://kitchen.robbiehaf.com
2178 inducing dog vomiting 2006-05-26 15:32:46 http://www.dog-first-aid-101.com
2178 inducing dog vomiting 2006-05-26 15:38:36
2178 walmart 2006-05-12 12:39:52 http://www.walmart.com
2178 sears 2006-05-12 12:44:22 http://www.sears.com
2178 target 2006-05-12 17:05:36 http://www.target.com
2178 babycenter.com 2006-05-12 17:43:59 http://www.babycenter.com
2178 google 2006-05-16 10:54:39 http://www.google.com
2178 fit pregnancy 2006-05-16 15:34:23
2178 baby center 2006-05-16 15:37:22
2178 yahoo.com 2006-05-18 17:11:05 http://www.yahoo.com
2178 applebee's carside 2006-05-19 19:21:08 http://www.applebees.com
2178 baby names 2006-05-20 15:02:38 http://www.babynames.com
2178 baby names 2006-05-20 15:02:38 http://www.babynamesworld.com
2178 baby names 2006-05-20 15:02:38 http://www.thinkbabynames.com
2178 mortgage calculator 2006-05-24 14:39:05 http://www.bankrate.com
2178 us zip codes 2006-05-25 21:26:47 http://www.usps.com
2178 us zip codes 2006-05-25 21:26:47 http://www.usps.com



Query Topic Model

• Each user
 

searches for a mixture of topics

• Each topic
 

is a probability distribution over query words

• Simultaneously solve for all unknowns using efficient stochastic 
search (MCMC and Gibbs sampling)



Topic = distribution over words
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User = mixture of topics
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Topic Model

• Model requires no background knowledge:

– no dictionaries

– no thesauri

– no ontologies, etc



Internet search behavior for 
different age groups



Share of Americans online by age

Source: PEW Internet & American Life Project (2005)



Survey of Online Activities by Age Group

Source: PEW Internet & American Life Project (2005)



Alternative to Survey Analysis

• PEW surveys presuppose you already know the questions 
to ask for

• Alternative: 

– automatically topic analyze the search terms people 
enter into a search engine

– Gives a more direct picture of the user goals and needs 



(will incorporate result slides during presentation)



Conclusions

• Topic modeling coupled with demographic analysis yields  
“windows” into the minds of different age groups

• Other potential applications:

– clinical data, e.g. therapy discussions

– open question surveys

– internet behavior, e.g. chatting, SMS, email



Open Questions

• How can research community get access to data from 
internet providers/ search engines?

• Privacy issues



Additional Slides



Example Topics from New York Times
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INPUT: word-document counts     (word order is irrelevant)

OUTPUT:
topic assignments to each word P( zi
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Algorithm input/output



Generative Process

• For each document, choose a mixture of topics

θ ∼

 

Dirichlet(α) 

• Sample a topic [1..T]  from the mixture 
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Software

Public-domain MATLAB toolbox for topic  modeling on the Web:

http://psiexp.ss.uci.edu/research/programs_data/toolbox.htm

http://psiexp.ss.uci.edu/research/programs_data/toolbox.htm


Choosing number of topics

• Bayesian model selection

• Generalization test 

– e.g., perplexity on out-of-sample data

• Non-parametric Bayesian approach

– Number of topics grows with size of data

– E.g. Hierarchical Dirichlet Processes (HDP)



Polysemy
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Disambiguation

“FIELD”

0

0.1

0.2

0.3

0.4

0.5

FIELD
MAGNETIC

MAGNET
WIRE

NEEDLE
CURRENT

COIL
POLES

BALL
GAME
TEAM

FOOTBALL
BASEBALL
PLAYERS

PLAY
FIELD

P(
 z

FI
EL

D
| w

 )

“FOOTBALL FIELD”

FIELD
MAGNETIC

MAGNET
WIRE

NEEDLE
CURRENT

COIL
POLES

BALL
GAME
TEAM

FOOTBALL
BASEBALL
PLAYERS

PLAY
FIELD

P(
 z

FI
EL

D
| w

 )

0

0.2

0.4

0.6

0.8

1



29

Recent Papers
• Steyvers, M., Griffiths, T.L., & Dennis, S. (2006). Probabilistic inference in 

human semantic memory. Trends in Cognitive Sciences, 10(7), 327-334.

• Griffiths, T.L., Steyvers, M., & Tenenbaum, J.B.T. (2007). Topics in 
Semantic Representation. Psychological Review, 114(2), 211-244. 

• Griffiths, T.L., Steyvers, M., & Firl, A. (in press). Google and the mind: 
Predicting fluency with PageRank. Psychological Science. 

• Steyvers, M. & Griffiths, T.L. (2008). Rational Analysis as a Link between 
Human Memory and Information Retrieval. In N. Chater and M Oaksford 
(Eds.) The Probabilistic Mind: Prospects from Rational Models of 
Cognition. Oxford University Press. 

• Chemudugunta, C., Smyth, P., & Steyvers, M. (2007). Modeling General and 
Specific Aspects of Documents with a Probabilistic Topic Model. In: 
Advances in Neural Information Processing Systems, 19.


	Extracting Semantic Themes �with Topic Models
	Research on Semantic Representations
	Two approaches to semantic representation
	New approach:�Probabilistic Topic Models
	Topic Models
	Topics provide quick summary of content
	Example:�Topic Analysis of Search Queries
	AOL dataset
	Example query log from user #2178
	Query Topic Model
	Topic = distribution over words
	User = mixture of topics
	Topic Model
	Internet search behavior for �different age groups
	Share of Americans online by age
	Survey of Online Activities by Age Group
	Alternative to Survey Analysis
	(will incorporate result slides during presentation)
	Conclusions
	Open Questions
	Additional Slides
	Example Topics from New York Times
	Algorithm input/output
	Generative Process
	Software
	Choosing number of topics
	Polysemy
	Disambiguation
	Recent Papers

