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Chasm between learning
sciences & educational practice

Dimensions of today’s challenge
• Empirical dimension

– Lots of rigorous principle-testing lab studies
– Lots of realistic classroom design research
– Too few experiments combine both

• Theoretical dimension
– Almost as many theories as there are results!

• Practical dimension
– Great ideas in field, ignored in lab
– Strong scientific results being ignored in field



Pittsburgh Science of
Learning Center (PSLC)
Purpose Statement

Leverage cognitive theory and
cognitive modeling to identify the
instructional conditions that cause
robust student learning



Overview

• Background: Cognitive Tutors & PSLC
• Assistance Dilemma

– Argument for less
– Argument for more

• Example-problem dimension --
cognitive & metacognitive issues



Real World Impact of
Learning Science

Cognitive Tutor Algebra course
• Based on cognitive theory & AI models of

student thinking & learning
• Most widely used & evaluated Intelligent

Tutoring System
> 2600 schools
> 10 full-year field studies

demonstrating better
student learning

Koedinger, Anderson, Hadley, & Mark (1997).
Intelligent tutoring goes to school  in the big city.
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Algebra Cognitive Tutor Sample
Analyze real world Analyze real world 
problem scenariosproblem scenarios Use graphs, graphics calculatorUse graphs, graphics calculator

Use table,  spreadsheetUse table,  spreadsheet

Use equations,Use equations,
symbolic calculatorsymbolic calculator

Tracked by Tracked by 
knowledge tracingknowledge tracing

Model tracing to provideModel tracing to provide
context-sensitive Instructioncontext-sensitive Instruction



Prior achievement:
Intelligent Tutoring Systems
bring learning science to schools

A key PSLC inspiration:
Educational technology as
research platform to generate
new learning science



Logic of Pittsburgh Science of
Learning Center (PSLC)
• Support experimental studies that

–Test fundamental principles, not whole
courses

–Are internally & externally valid

• Create a theory of “robust learning”
• Leverage technology &

computational modeling



A Bet About the Future

• The key to the 21st century university:
• Technology!
• And not because of the direct benefits

of technology
• But because of vast data on learning &

fast feedback to instructors, designers,
administrators, researchers …



LearnLab: Like a research
hospital for learning

• Tech enhanced courses in
Science, Math & Language

• Agreements with schools
– Instrument for continuous

embedded assessment
– In Vivo Experiments test

principles for achieving robust
learning

Researchers Schools

Chemistry virtual labChemistry virtual lab

Physics intelligent tutorPhysics intelligent tutor

REAP vocabulary tutorREAP vocabulary tutor

Researchers Schools

Learn
Lab



Example In Vivo Experiment
on “Self-Explanation”

Aleven, V. & Koedinger, K. R. (2002). An effective metacognitive strategy: Learning by
doing and explaining with a computer-based Cognitive Tutor. Cognitive Science, 26(2)

• Self-explanation: Have students explain
steps in solutions

• In vivo experiments: Tightly controlled
principle-testing experiment embedded
in a real course



Problem Solving Condition
(Ecological control: Tutor as it was)



Explanation Treatment
Condition

Problem
solving
answers

Explanation
by reference



Self-explanation yields
better transfer
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The “Assistance Dilemma”

Instructional designer’s dilemma:

When should instruction provide students with
assistance

vs.
When should it withhold assistance & elicit student
knowledge construction?

• Fundamental unsolved problem in the learning
sciences
– Defines a design space for instruction
– Experiments & theory to find areas of space where

robust learning is maximized



Cost of errors
Floundering,
confusion, wasted
time

Generation effect
Engages &
structures LTM

Withholding
information
or
assistance

Shallow processing
Does not engage LTM

Efficiency of
communication

Giving
information
or
assistance

CostsBenefits

Assistance Dilemma: Whether
to give or to receive?



The no pain, no gain argument
=> more assistance

Many researchers & results argue for
lower assistance
place greater demands on students
– “Desirable difficulties” (Bjork)

• Interleaved practice, delayed feedback, wide
spacing

– Abstract examples (Kaminski & Sloutsky)
– Prompting for self-explanation
– Invention as preparation (Schwartz)



Testing effect

• “Tests enhance later retention more
than additional study of the material,
even when tests are given without
feedback.
This surprising phenomenon is called
the testing effect”
– Roediger & Karpicke, 2006



Testing Effect Example
Karpicke & Roediger, 06

• “Tests enhance later retention more than additional
study of the material” (R&K, 06)
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Testing Effect Example 2
Thompson, Wenger, & Bartling (1978)

• “Tests enhance later retention more than additional
study of the material” (R&K, 06)
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Spacing Effect: Wider is better
(lower assistance) …

Pavlik, P. I., Jr., & Anderson, J. R. ( 2005). Practice and forgetting effects on vocabulary memory: An
activation-based model of the spacing effect. Cognitive Science, 29, 559-586.

High Low
Assistance

But too wide yields
poorer long-term
retention
& (not shown) re-study
requires more
instructional time



Is it “no pain, no gain”?

Or “less pain, more gain”?

• Arguments for higher
assistance …



The less pain, more gain
argument => more assistance
Other researchers & results argue for higher assistance
• Direct instruction (Behaviorist, Klahr, ...)
• Cognitive Load Theory (Sweller, Mayer …)

– Reduce “extraneous” cognitive load
– Mayer’s multimedia principles

• Modality, continguity principles ....

– Sweller et al.
• No-goal problems, worked examples ...

• Provocative paper:
– Why minimal guidance during instruction does not work:

An analysis of the failure of constructivist, discovery,
problem-based, … (Kirschner, Sweller, & Clark, 2006).



Worked Examples
Sweller & Cooper

• “a worked example constitutes the epitome of strongly
guided instruction” (K, S, C, 06)
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Can worked example principle
beat a strong control?
• Prior work: Added worked examples to

untutored problem solving
• New: Add examples to tutored problem

solving

Some
Learning
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Solving
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problem
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problem
solving
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learning

Prior
studies

Best?

New
studies
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PSLC In Vivo Studies of Worked
Examples in Intelligent Tutors

• Chemistry tutor studies
– Replacing half problems with worked

examples yields more efficient learning --
same outcome in ~20% less time

• Algebra
– Less time, better long-term retention

• Geometry tutor studies
– Not only less time, but better conceptual

transfer



Ecological Control  =
Standard Cognitive Tutor
Students solve problems step-
by-step & explain



Worked out steps with
calculation shown by Tutor

Treatment condition:
Half of steps are given as
examples

Student still has
to self explain
worked out step
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Think aloud data: Indicate
different modes of thinking

• Problem group: Explained how
– “one can compute the measure of arc EF by

subtracting 33.3 from 360”
=> more procedural learning

• Example group: Explained why
– “This is a major and minor arc,  this means

the sum of both is 360 degrees”
=> more conceptual principle learning



Theory: Does Cognitive Load
Theory Account for Result?

• Tutors are designed to minimize load
– Tutor provides step-by-step feedback,

often gives goal structure to students
• Mediates goal processing load attributed to

problem solving

• Nevertheless students seem to benefit
– Better to present examples before rather

than within problems

• Why?



Why examples before rather
than within problems?

• Cognitive Load Theory not adequate
• Alternative: Metacognitive frame of

mind evoked by problem solving
– More engineering than science mode of

thinking (Schauble; Miller)
– More performance oriented than learning

oriented (Dweck; Elliot)



Tutor Data Mining Evidence

• What happens when students get a
“bottom-out” hint?

• …

Shih, Koedinger, & Scheines (2008). A response time model for bottom-
out hints as worked examples.  In Proceedings of the First International
Conference on Educational Data Mining. [Conference Best Paper]



“Bottom-out” hint in Cognitive
Tutors => on-demand example

 

 
 

 
 



Individual differences in self-
explanation
After bottom-out example:
• Some students enter answer & move on
• Others seem to reflect, engage in self-

explanation
– Measure: spend more time than usual

• Students who reflect more, learn
more!
(R = 0.48)



A step toward resolving assistance
dilemma … with very broad impact
implications!

Implicit: Example
solutions

Explicit rules

ElicitGive
Lecture

Homework

• Current instruction: Gives rules & elicits
solutions

• Better instruction: Gives solutions &
elicits rules/concepts

Worked
example

Self-
explanation

Instructor options



Final Thoughts

• Cognitive Tutors bring learing science to
schools, but also ...

• Ed Tech as “Hubble telescope” for
learning research!

• Assistance Dilemma is fundamental
unsolved problem in learning science
– Inverted-U function worked out for some

dimensions of assistance
– Using in adaptive systems that optimize for

robust learning



END 1



Assistance Dilemma Summary

desirable
difficulty;
germane

load

undesirable
difficulty;

extraneous
load

Low
assistance
(more
demanding)

scaffoldcrutch
High
assistance
(less
demanding)

GoodGood
learning
outcome

PoorPoor
learning
outcome

Instructional
support

•Row 1 illustrates how higher levels of instructional assistance can sometimes be a “crutch” that harms learning, but other times be a “scaffold” that bootstraps learning.   Row 2 illustrates how lower levels of assistance (or inversely greater imposed dem
ands on students) can sometimes lead to poorer learning and other times lead to better learning. A long line of research on “cognitive load theory” (e.g., Sweller, Van Merriënboer, & Paas, 1998) suggests how some typical forms of instruction, like homewor
k practice problems, put “extraneous” processing demands (or “extraneous load”) on students that may detract from learning.  Another line of research on “desirable difficulties” suggests ways in which making task performance harder during instruction (red
ucing assistance), for instance, by delaying feedback, enhances learning (Schmidt and Bjork, 1992).  And even within cognitive load theory, some task demands (e.g., increased problem variability) elicit “germane” rather than “extraneous” cognitive load an
d lead to better learning.

•Long-standing notions like zone of proximal development (Vygotsky, 1978), aptitude-treatment interactions (Cronbach & Snow, 1977), or model-scaffold-fade (Collins, Brown, & Newman, 1990) suggest that instructional assistance should be greater for beginnin
g learners and be reduced as student competence increases.  So, what’s the dilemma?  Why not just give novices high assistance and fade it away as they become more expert. The theoretical problem, the dilemma, is that current theory does not predict how m
uch assistance to initially provide nor when and how fast to fade it. It does not provide predictive guidance as to when an instructional demand is “germane” or “extraneous”, “desirable” or “undesirable.” The Assistance Dilemma remains unresolved because 
we do not have adequate cognitive theory to make a priori predictions about what forms and levels of assistance yield robust learning under what conditions.

•In Koedinger et al. (2008), we outlined the following steps toward resolving the dilemma:
•1. Decompose: Identify and distinguish relevant dimensions of assistance, like giving lots of example solutions vs. withholding them (problems), giving vs. withholding immediate feedback, giving low vs. high variability examples. 
•2. Integrate: For each dimension: Collect, summarize, and integrate the relevant empirical and theoretical results from the research literature.
•3. Mathematize: For each dimension: Characterize a set of conditions and parameters that can be used as part of a precise theoretical model that makes computable predictions about robust learning efficiency. 
•4. Test: Use the model to make a priori predictions about what level(s) of assistance under what conditions yield the greatest robust learning efficiency.  Test those predictions in laboratory and in vivo experiments. 
•
•A key goal of PSLC’s theory wiki is to get researchers working together, both within PSLC and within the broader learning science and education research community, to perform the gargantuan effort implied by steps 1 and 2.   illustrates how we have carrie
d out steps 3 and 4 with respect to the “practice spacing” dimension of assistance (Koedinger et al., 2008; Pavlik & Anderson, 2005).   

•Figure .  In the lower left is the assistance curve for the practice-spacing dimension.  The top-level equation that generates the curve is shown above where effm is the y-axis and m is the y-axis.  Other equations, not shown, map from m to the variables 
that have m as subscript: pm, gm, and tm.

•An output of step 3 is a mathematical function (or set of functions) that can produce an “assistance curve”.  As shown on the left in , this curve has an inverted-U shape for most reasonable values of the parameters in the equation (shown on the right).  
Consistent with notions like zone of proximal development described above, we suspect this inverted-U form will characterize most assistance dimensions.  But, the key to resolving the assistance dilemma is creating the mathematical equations and parameter
s that generate the inverted-U in way that is consistent with cognitive theory and with available empirical data.   

•Drawing on a number of PSLC projects and data from many domains, we have made considerable progress on a second dimension of assistance, the example-problem dimension -- see the Coordinative Learning section.  The generation of the mathematical equations 
for this dimension (step 3) are being driven in part by our SimStudent model (Matsuda et al., 2008) -- see the Data Mining, Knowledge Representation, and Learning section.  More generally, use of the Assistance Dilemma has driven analysis and interpretati
on of many other PSLC projects, some of which are described below (e.g., in the Interactive Communication section).

Need predictive theory => engineer more effective instruction!



Formulating trade-off => adaptive
technology to optimize learning

effm =  efficiency of robust learning
 pm*bsuc*gm = learning from success
(1-pm)*bfail*gm = learning from failure
pm (tm+ fsc) = success time
(1-pm)ffc = failure time

m = activation of fact
pm = probability of recall success
bsuc = gain from success
bfail = gain from review after failure
gm = long-term increase in activation
tm = time of recall
fsc = time for success
ffc = time for failure



General form of “assistance
formula”
For each learning event:

Robust learning efficiency gain =
p * benefit-of-success + (1-p)*benefit-of-failure
p * cost-of-success + (1-p)*cost-of-failure

p = Probability of success during instruction



PavlikPavlik’’s s Tutor for Fact PracticeTutor for Fact Practice
Different
practice
tasks:

English->Pinyin

Audio->English

Hanzi->English

Practice trial

+ feedback
when correct

Review when
incorrect



Adaptive Fading of Examples

• Fading based on quality of self
explanations of worked out value steps
(assessed by Tutor)

• Students who self explain well receive
fewer examples than students who self
explain poorly



ResultsResults

 adaptive fading examples > fixed conditionsadaptive fading examples > fixed conditions

Post-Test

Delayed
Post-Test



Results: In Vivo studyResults: In Vivo study

 Result is robust in classroom environment:Result is robust in classroom environment:
adaptive fading examples > problem solvingadaptive fading examples > problem solving



END 2



Examples <> Study trials
Problems <> Test trials
What’s the difference?
• Testing effect studies focus on facts

– Learning process is memory

• Worked example studies are about
learning general rules & procedures
– Robust learning requires category induction

as well as memory



Progress on Principles of
Learning to Guide Practice
• PSLC wiki: See learnlab.org

• IES: Cognition Practice Guide

• APS group & web site


