Neuroeconomics:
The Multiple Systems Hypothesis

David Laibson
Robert I. Goldman Professor of Economics
Harvard University
September 29, 2008
Neuroeconomics: definition.

Definition: Neuroeconomics is the study of the biological microfoundations of economic cognition.

- **Biological microfoundations** are neurochemical mechanisms and pathways, like brain systems, neurons, genes, and neurotransmitters.
- **Economic cognition** is cognitive activity that is associated with economic perceptions, beliefs and decisions, including mental representations, emotions, expectations, learning, memory, preferences, decision-making, and behavior.
The Multiple Systems Hypothesis

- Statement of Hypothesis
- Variations on a theme
- Caveats
- Illustrative predictions
 - Cognitive load manipulations
 - Willpower manipulations
 - Affect vs. analytic manipulations
 - Cognitive Function
 - Development
 - Neuroimaging
- Directions for future research
Statement of Multiple Systems Hypothesis (MSH)

• The brain makes decisions (e.g. constructs value) by integrating signals from multiple systems
• These multiple systems process information in qualitatively different ways and in some cases differentially weight attributes of rewards (e.g., time delay)
An (oversimplified) multiple systems model

System 1 -> Integration -> System 2

Behavior
An uninteresting example

What is 6 divided by 3?
A more interesting example

Would you like a piece of chocolate?

Abstract goal: diet → Integration → Visceral reward: pleasure

Behavior
A more interesting example

Would you like a piece of chocolate?

Abstract goal: diet
Integration
Visceral reward: pleasure
Behavior
Variations on a theme

- Interests vs passions (Smith)
- Superego vs Ego vs Id (Freud)
- Controlled vs Automatic (Schneider & Shiffrin, 1977; Benhabib & Bisin, 2004)
- Cold vs Hot (Metcalfe and Mischel, 1979)
- System 2 vs System 1 (Frederick and Kahneman, 2002)
- Deliberative vs Impulsive (Frederick, 2002)
- Conscious vs Unconscious (Damasio, Bem)
- Effortful vs Effortless (Baumeister)
- Planner vs Doer (Shefrin and Thaler, 1981)
- Patient vs Myopic (Fudenburg and Levine, 2006)
- Abstract vs Visceral (Loewenstein & O'Donoghue 2006; Bernheim & Rangel, 2003)
- PFC & parietal cortex vs Mesolimbic dopamine (McClure et al, 2004)
Affective vs. Analytic Cognition

Frontal cortex

Mesolimbic dopamine reward system

Parietal cortex
Commonalities between classification schemes

Affective system
- fast
- unconscious
- reflexive
- myopic

Analytic system
- slow
- conscious
- reflective
- forward-looking
Caveats

• $N \geq 2$
• The systems do not have well-defined boundaries (they are densely interconnected)
• Maybe we should not say “system,” but should instead say “multiple processes”
• Some systems may not have a value/utility representation
 – Making my diet salient is not the same as assigning utils/value to a Devil Dog
• If you look downstream enough, you’ll find what looks like an integrated system
Predictions

• **Cognitive Load Manipulations**

• **Willpower manipulations**
 - Baumeister and Vohs (2003)

• **Affect vs. analytic manipulations**
 - Rodriguez, Mischel and Shoda (1989)

• **Cognitive Function**
 - Benjamin, Brown, and Shapiro (2006), Shamosh and Gray (forth.)

• **Developmental Dynamics**
 - Green, Fry, and Myerson (1994), Krietler and Zigler (1990)

• **Neuroimaging Studies**
McClure, Laibson, Loewenstein, Cohen (Science, 2004)

- Intertemporal choice with time-dated Amazon gift certificates.
- Subjects make binary choices:
 - $20 now or $30 in two weeks
 - $20 in two weeks or $30 in four weeks
 - $20 in four weeks or $30 in six weeks
β areas respond “only” to immediate rewards

$20 \textbf{now or } $30 \textbf{in two weeks}$

$20 \textbf{in two weeks or } $30 \textbf{in four weeks}$

$20 \textbf{in four weeks or } $30 \textbf{in six weeks}$
δ Areas respond equally to all rewards

VCtx

PMA

RPar

DLPFC

VLPFC

LOFC

$x = 44\text{mm}$

$x = 0\text{mm}$

0.4%

$2s$

$\text{Red: 20 now or 30 in two weeks}$

$\text{Green: 20 in two weeks or 30 in four weeks}$

$\text{Blue: 20 in four weeks or 30 in six weeks}$

$\text{Graphs showing different reward scenarios and their corresponding brain activity in different areas.}$
Effect of Difficulty

P(choose early)

(R’-R)/R

Response Time (sec)

Effect of Difficulty

Response Time (sec)

BOLD Signal

VCtx

PMA

RPar

DLPFC

VLPFC

LOFC

0.4%

2s

Easy

Difficult

1-3%

5-25%

35-50%

Difficult

Easy
Brain activity in the frontoparietal system and mesolimbic dopamine reward system predict behavior

(Data for choices with an immediate option.)
McClure, Ericson, Laibson, Loewenstein, Cohen
(Journal of Neuroscience, 2007)

Subjects water deprived for 3hr prior to experiment

(a subject scheduled for 6:00)
Figure 1

A

15s 10s 5s

(i) Decision Period
(ii) Choice Made
(iii) Pause
(iv) Reward Delivery

iv. Juice/Water squirt (1s)
Experiment Design

\[d \in \{ \text{This minute, 10 minutes, 20 minutes} \} \]
\[d'-d \in \{ \text{1 minute, 5 minutes} \} \]
\[(R, R') \in \{(1,2), (1,3), (2,3)\} \]

\[d = \text{This minute} \]
\[d'-d = 5 \text{ minutes} \]
\[(R, R') = (2,3) \]
Neuroimaging data estimated with general linear model.

A \(\beta \) areas: respond only to immediate rewards

B \(\delta \) areas: respond to all rewards

Figure 4
Relationship to Amazon experiment:

\[\delta \text{ areas (} p < 0.001 \) } \]

\[\beta \text{ areas (} p < 0.001 \) } \]

Figure 5
Average Beta Area Activation, Actual and Predicted

- Time to later reward vs. Normed Activation

Graph labels:
- Actual
- Predicted

Data points:
- (D=0, D'=1)
- (D=0, D'=5)
- (D=10, D'=11)
- (D=10, D'=15)
- (D=20, D'=21)
- (D=20, D'=25)
Average Delta Area Activation, Actual and Predicted

- (D=0, D'=1)
- (D=0, D'=5)
- (D=10, D'=11)
- (D=10, D'=15)
- (D=20, D'=21)
- (D=20, D'=25)

Normed Activation

Time to later reward

- Actual
- Predicted
Future work:

1. Are multiple system models a useful way of generating new hypotheses and models?
2. Are these systems localized? If so, where?
3. How do the systems communicate?
4. How are the inputs integrated?
5. When are the systems cooperative and when conflictual?
6. When they are in conflict, are they strategic?
7. What manipulations enhance or weaken the signals coming from these systems?
8. Can we influence individual systems in the lab?
9. Can we influence individual systems in the field?
10. Can we produce useful formalizations of their operation?