Risky Behavior in Adolescents: The Role of the Developing Brain

Adriana Galván, PhD
Department of Psychology
University of California, Los Angeles

National Science Foundation Workshop on Higher Cognition in Adolescents and Young Adults
What we know about brain development

• The brain is already about 90% of its adult size by the first grade

• The amount of gray matter increases until early adolescence (Giedd et al; Sowell et al)

• The amount of white matter, which helps brain increases until the mid-20s.
Brain regions that show the greatest structural changes during adolescence

Sowell et al 1999
Prefrontal cortex is necessary for many cognitive functions:

- decision-making
- impulse control
- future planning
- goal-directed behavior
- appreciation of future outcomes
The part of the brain teens need the most to develop good judgment and decision-making “develops” last
Children show greater activation in prefrontal regions to perform the same cognitive task

Prefrontal Recruitment

Volume of Activity

1800 1500 1200 900 600 300 0

Children: 1800
Adults: 0

(Casey et al, 1997)
Cognitive Task

Feedback
Prefrontal recruitment in adolescents parallels recruitment in children.

**Galvan et al, 2006**

- **Voxel recruitment (mm³)**
  - Children
  - Adolescent
  - Adults

- *p = 0.01*
So why don’t children also show the same levels of suboptimal decision-making as adolescents?
By mid-adolescence, teens have cognitive skills similar to adults (Fischoff, 2008)

- Sensitive to future outcomes (Fischoff et al 2000)
- No unique teen sense of invulnerability (Millstein & Halpern-Felsher, 2002)
Psychosocial maturity continues to develop into early adulthood, long after adolescents have become as “smart” as adults

Steinberg, 2007
In the lab, individuals make decisions....

<table>
<thead>
<tr>
<th>Alone</th>
<th>In the real world, individuals make decisions....</th>
</tr>
</thead>
<tbody>
<tr>
<td>Under conditions of low arousal</td>
<td>In Groups</td>
</tr>
<tr>
<td>In hypothetical situations</td>
<td>Under conditions of high arousal</td>
</tr>
<tr>
<td></td>
<td>In real-life situations</td>
</tr>
</tbody>
</table>
Contextual factors influence risky decision-making

- Peers
- Curiosity
- Life Stressors
- Poor impulse control

Emotion
Brain regions that are active during emotion processing
Development of the cognitive control system and the "social-emotional" system across different stages of life: child, adolescent, and adult. 

Casey, Getz & Galvan, 2008
Dual brain systems involved in decision-making and judgment

“Social-emotional” system mainly involves limbic regions

“Cognitive control” system mainly involves cortical regions
Does the influence of each neural system on risk and decision-making change with development?
How does reward influence neural recruitment in adolescents?

- 13 Children
  (7 female; mean age: 9)
- 12 Adolescents
  (6 female; mean age: 16)
- 12 Adults
  (6 female; mean age: 25)
Brain Activity

Small Reward

Large Reward

Galvan et al, 2006

Children
Adolescent
Adults
Brain Activity

Small Reward

Large Reward

Galvan et al, 2006

Children

Adolescent

Adults
Decision-making under the influence of positive feeling states occurs more quickly and efficiently than under neutral states (Rivers et al 2008, Bodenhausen et al 1994)
Adolescents show heightened brain activity to incentives/rewards while cognitive control systems are still relatively immature.
Not all adolescents make bad decisions

but a lot of bad decisions are made during adolescence
Individual differences

- Are there individual differences in how neural sensitivity to affect/reward relates to actual risk-taking choices?

- Individual differences in dopamine transmission might relate to the propensity to engage in risky behavior (e.g. O’Doherty, 2004)
Extensive variability in ventral striatal activation across development
Self-report of risky behavior

- Cognitive Appraisal of Risky Events (CARE) for Adults and Adolescents (Fromme et al 1997)
- CARE for Children (modified version)

- Likelihood of engaging in the following behaviors in the near future:
  Example items:
  - Leaving a social event with someone I just met
  - Driving after drinking alcohol
  - Skydiving
  - Gambling
  - Smoking marijuana
Brain activity associated with increased likelihood of risky behavior

Galvan et al., 2007
Risk-taking fMRI Task (BART)

• Increasing risk accompanies increasing potential reward
• On each trial, subjects chooses between sure outcome (rejecting the gamble) and risky outcome (accepting the gamble)
Risk-taking fMRI Task (BART)

- Increasing risk accompanies increasing potential reward
- On each trial, subjects choose between sure outcome (rejecting the gamble) and risky outcome (accepting the gamble)

TOTAL GAIN = $1.00
(GOES INTO BANK)
Consequences to Accepting Risk

Balloons explode randomly according to a uniform distribution over # of presses - when balloon explodes, no money is gained for that trial (but money in bank is safe)

TOTAL GAIN = $0.00

<ACCEPT>  <ACCEPT>  <ACCEPT>
Control trial allowed subtraction of basic sensorimotor-related brain activation
Brain activation during risky choices in teens

- N=18 (12 females)
- Ages 16-19 years (mean: 17 years)
- Greater ventral striatal and OFC activation during decision to take gamble relative to decision to cash-out
Brain activation during risky choices in risk-taking teens (smokers)

- N=28 (10 smokers)
- Ages 16-20 years (mean: 18 years)
- fMRI during BART and Stop-Signal Task (measure of response inhibition)
Stronger correlation between prefrontal brain activation during gamble (BART) and poor response inhibition in smokers, but not in nonsmokers.
Conclusions

• Protracted development of regions critical for cognitive control is not the sole reasons adolescents make poor choices; a dual-systems approach to understanding neurobiological underpinnings of adolescent decision-making is necessary.

• Development of brain regions sensitive to emotion and reward is distinct from development of regions involved in judgment and decision-making.

• These developmental changes can be exacerbated by individual differences in brain activity of affect-related regions.

• Adolescent risk-takers show distinct neural recruitment than adolescents who are less risk-taking.
Implications

• Context plays a crucial role in how decisions will be made: Risky choices made in emotional circumstances differ from those made non-emotional circumstances.

• Individuals prone to risky behavior may be at further risk during adolescence when neural systems underlying risky behaviors undergo significant development.

• Prevention/treatment approaches should not be ‘one size fits all’

• Policy should take advantage of the natural tendency of youth to explore new opportunities, become emotional engaged, influence their peers, and respond to immediate rewards (and disincentives).
Acknowledgements

Valerie Reyna, PhD
Karene Booker
BJ Casey, PhD
Russ Poldrack, PhD
Edythe London, PhD
Kristine McGlennnen
Cindy Parra

Participating families
NIDA
NIMH
National Science Foundation