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The purpose of this tutorial is to outline the application of a group of two-stage Markov models 

that have been used to quantify recollective and nonrecollective retrieval processes (Brainerd, Aydin, & 

Reyna, 2012; Brainerd & Reyna, 2010; Brainerd, Reyna, & Howe, 2009; Gomes, Brainerd, & Stein, 2013).  

The tutorial provides a step-by-step guide on how to compute the relevant statistics to obtain 

parameter estimates and goodness-of-fit statistics.  Because the models measure retrieval operations 

that can be broadly separated into recollective (direct access, D) and nonrecollective ones 

(reconstruction, R, and familiarity judgment, J), we also refer to them as dual-retrieval models.  For 

specific information about the models and the theory underlying them, please see Brainerd et al. 

(2009).  

  

Section I:  Dual Retrieval Models   
In addition to the original dual-retrieval model with 11 free parameters (Brainerd & Reyna, 2010; 

Brainerd et al., 2009), we have developed four other reduced models with 6 free parameters.  Although 

the five models measure both recollective and nonrecollective processes, the original model can only fit 

data from experiments with at least 4 trials (T1,T2,T3,T4), whereas the reduced models can fit data from 

experiments with only 3 fixed trials (T1,T2,T3).  However, the procedures described here apply to all five 

models.  Below is a short description of each model, separated by study (S) and test (T) design, and their 

respective starting vector (W) and transition matrix (M):  

-  For a S1T1T2, S2T3, S3T4 (noncanonical) design: The original dual-retrieval model with 11 free 

parameters can be applied to such data.  The model has 4 direct access parameters (D1, D2, D3c, 

D3E), 2 reconstruction parameters (R1, R2), 4 familiarity judgment parameters (J1, J2, J3C, J3EC), and 

1 forgetting parameter (f).    

Original model:  

 
 



 Created by Carlos Gomes (cf365@cornell.edu) and Ryan Yeh (ry58@cornell.edu)   2  

Last update: July 2nd, 2013  

-  For a S1T1, S2T2, S3T3 (canonical) design: Four dual-retrieval models with 6 free parameters can 

be applied to such data.  We refer to such models as the learning on errors model (“error 

model” for short), learning on successes (success model), and learning on both errors and 

successes model (both model).  Such reduced models have 2 direct access parameters (D1, D2), 

2 reconstruction parameters (R1, R2), and 2 familiarity parameters (J1, J2).  The difference 

between them lies on the State L late learning entry parameter D2, namely whether entry in 

State L after trial 1 depends on prior incorrect recall (error model), prior correct recall (success 

model), or does not depend on prior correct or incorrect recall (both model).  Finally, the fourth 

reduced model is an alternative version of the error model in which there is 1 reconstruction 

parameter  

(R) and 3 familiarity judgment parameters (J1, J2, J3) in addition to the 2 direct access parameters.   

  

Error model:  

 

Alternative Error model:  
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Success model:  

 

Both model:  

 

Section II: Example   
This example used a database composed of 15 subjects that learned to recall a list of 40 words using the 

S1T1T2, S2T3, S3T4 noncanonical design mentioned in Section 1.  The database is available on the website 

(Database I).  The model applied to the data was the original dual retrieval model.  

1. Structure of the database   

The database must follow a specific format in order to compute the frequencies of correct (C) and 

incorrect (E) recall across trials using the data count program, namely   

• The first row contains the names of variables, with the data range beginning in the second row.   

• The first column contains the subject ID number.   

• In the first row, each column after the first one will contain both the name of the to-be-recalled 

items and the trial number. Specifically, the variable names must have the following format: 

[name of the item][lowercase letter t][trial number].  For instance, column #2 can be called 

SPIDERt1, meaning the item SPIDER on trial 1.  The program will look for this structure in order 

to compute items’ history of recall across trials, so make sure that each item has the same 

name across trials (e.g., SPIDERt1, SPIDERt2, SPIDERt3, SPIDERt4).  NOTE 1: The word list cannot 

contain different set of words on different trials. The program will not compute the frequency 

of C-E patterns across trials if this is the case. NOTE 2: Only words used in the recall test can 

have the above format. Thus, it is possible to have other variables (e.g., age), provided that 

these variables are not written in the format above.   
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• Use binary coding to assign correct recall (1) and incorrect recall (0).   

• Ensure that there are no empty cells within the data range.   

• The worksheet in which the database is stored must be called DATA.  

  

Here is a screen shot of the sample database:  

 

2. Computing frequencies of C-E patterns across trials   

The data count program (see Programs and Model Files) is an Excel VBA macro that reads the database 

and computes C-E frequencies.  Because an item is either recalled (1 = C) or not (0 = E) on each test, 

there are a total of 2n patterns of C-E responses across trials, in which n is the total number of trials.  In 

our example, the database is composed of 4 separate recall tests and, therefore, there are 24 = 16 

patters of C-E responses (CCCC, CCCE, ..., EEEE).  For instance, if a given word is recalled successfully 

across all 4 trials, that would be counted as CCCC = 1;  if a given word is recalled successfully on the first 

3 trials but unsuccessfully on the last trial, that would be counted as CCCE = 1.  This is done for all items 

and subjects in the DATA worksheet of the data count Excel file, and the final frequencies are the ones 

aggregated across both.    

1. Open the data count program and the database.  

2. Transfer the responses from the database to the DATA worksheet in the data count program.   

3. Enable the use of macros in Excel (for security reasons, the default setting is not to allow their 

use).  Go to Tools > Options > Security > Macro Security and then reduce the security level to 

Low.   
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4. Make sure that the structure is the same as noted earlier in Section 2.1.    

5. Press Ctrl+U (or the button) to run the macro.   

6. The results will be pasted on the RESULTS worksheet of the data count program.   

For our database, the frequencies were the following:   

CCCC: 167 CCCE: 7 CCEC: 9 CCEE: 2 CECC: 12 CECE: 4 CEEC: 5 CEEE: 3 ECCC: 24 ECCE: 2 

ECEC: 1 ECEE: 1 EECC: 123 EECE: 12 EEEC: 103 EEEE: 125  

  

In our database, there were 167 cases in which an item was recalled on all tests (CCCC), and 125 in 

which an item was never recalled (EEEE).  Of course, the sum of all frequencies should be equal to the 

product between (sample size) and (number of items), which is 15 x 40 = 600 in this case, and the 

proportion of items recalled on the ith test is simply the sum of C-E patters in which there is a C on the 

ith test divided by the sum of all frequencies.  For instance, the proportion of items recalled on the 3rd 

test was = (CCCC + CCCE + CECC + CECE + ECCC + ECCE + EECC + EECE) / [(sample size) x (number of 

items)] = .59.  

  

3. Obtaining parameter estimates and goodness-of-fit statistics using GPT  

Once the frequencies of C-E patterns across trials have been computed, you are ready to enter them 

into the GPT.   

a) Open the GPT  

b) Go to File > Open > Models and load the original dual-retrieval model .pt2 file (see Programs 

and Model Files)   

  
c) Once you have loaded the model, you can start entering the C-E frequencies:  Right click on the 

model window > Model > Input data   
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d) Enter the frequencies in their respective cell in the first column, as follows:  

  

  
e) Add a name to the column by clicking on it with the right button, then rename.  

f) Click apply and save the file  
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You are now able to compute parameter estimates and goodness-of-fit statistics.   

a) Return to the model window   

b) Right click > Model > Estimation, simulation or power analysis   

  

c) In the select models column, select BrainerdReynaAgingRecallModel, which is the default  

(unconstrained) model  

d) In the select data for estimation, select the first row or whatever row that contains the 

frequencies you have entered previously  

e) Then click Run   

f) Once the program stops running, the results will be presented in the Output Tab and will also 

be pasted on the Output Window (see Hu & Phillips, 1999, for more information).  The 

maximum likelihood estimates of each parameter, their respective standard deviation (SD), and 

the goodness-of-fit statistic (χ²) pasted on the output window should look like this:  
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Section III: Hypothesis Testing   
Comparisons between parameter estimates can be performed via likelihood ratio tests (LRT) (e.g., 

Brainerd, Reyna, & Howe, 2009).   LRT can be broadly separated into two types: (a) within- and (b) 

between-condition tests.  The former type tests hypotheses regarding parameter differences within the 

same experimental condition, which can be either differences between parameters (e.g., H0: R1 = R2 vs. 

H1: R1 ≠ R2) or differences between parameters and a constant (e.g., H0: f = 0 vs. H1: f ≠ 0).  The latter 

type tests hypotheses that have to do with localizing treatment effects, that is, whether parameter  

estimates differ across any set of k > 1 conditions (e.g., H0: J1, Condition 1 = J1, Condition 2 vs. H1: J1, Condition 1 ≠ J1, 

Condition 2).  Between-condition tests can be further divided into experiment-wise tests, condition-wise 

tests, and parameter-wise tests.  Because Type I error increases as a function of the number of tests, it is 

often advised to perform condition-wise and parameter-wise tests only if there is global statistical 

evidence of treatment effects, as indicated by an experimentwise test, or adjust the family-wise alpha 

level using a correction such as Bonferroni (αadjusted = α / n, in which n is the total number of comparisons) 

or Sidak (αadjusted = 1 – (1 – α)1/n).    

In GPT, the test statistic in all cases is computed by subtracting the fit statistic of the unconstrained 

model (i.e., a model in which all parameters of the model are free) from the constrained model (a model 

in which one imposes the restrictions of interest, e.g., f = 0).  The resulting difference is a statistic 

asymptotically distributed as χ², with df equal to the difference in free parameters between the two 

models.  The critical χ² value of the test can therefore be calculated and compared against the observed 

χ².    

Next, we describe how to perform LRT using the GPT program.  We will be using the database provided 

on the lab website (Database II).  Note that the database contains three worksheets, each containing 

data from a different experimental condition.   

  

  

A. Within-Conditions Test: Parameter = Constant   

  

In this section, we will perform a within-condition hypothesis test on the data from Condition 1.  The 

null hypothesis being tested is that D1 = 0.   

  

1. Compute the goodness of fit statistic for the unconstrained model by following the instructions 

in Section 2.  It was equal to 7.83.  
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2. Next, we will compute the goodness of fit statistic for the constrained model.   

  

3. Click on the show property panel in the model window, and the following screen should appear:   

  

 
  

  

  

4. Select the parameter of interest. In this case, click on D1 in the model window.  
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5. Click “Set Parameter as Constant”, and specify the value.  In our case, D1 = 0.001:  

   

6. Click Apply  

7. Deselect the “show property panel” and return to the main window.   
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8. Click Save the Model Version, and name the model. In this case, we named the constrained 

model, D1 = 0.   

9. Select the constrained model and compute the goodness of fit.   

 
 

10. The goodness of fit statistic was equal to 13.85:  
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11. One can now perform the hypothesis test by comparing the two goodness of fit statistics:   

Constrained = 13.85  

              Unconstrained = 7.83  

  

12. Calculate the difference between the two statistics to obtain the test statistic:   

Test statistic = 13.85 – 7.83 = 6.02  

13. Compare the test statistic to the test’s critical value.  For instance, at a significance criterion of 

.05, the critical value of the test statistic is χ²(1) = 3.84.  Because the test statistic is higher than 

the critical value, we reject the null hypothesis of the test.  

  

B. Within-Condition Test:  Parameteri = Parameterj, for i ≠ j   

In this section, we will perform a within-condition hypothesis test on the data from Condition 1.  The 

null hypothesis being tested is that D1 = D2.   

  

1. Compute the goodness of fit statistic for the unconstrained model by following the instructions 

in Section 2.  It was equal 7.83.    

    

2. Next, we will compute the goodness of fit statistic for the constrained model.   

3. Right Click ---> Model ---> Hypothesis Test   

4. Deselect “Same Level”   

5. Select D1 in the left hand column and then select D2 in the right hand column.     
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6. Click Apply and Done   

7. Click “Save Model Version”, and name the constrained model appropriately. Here, we named it 

D1 = D2.   

8. Compute the goodness of fit statistic for the constrained model.    
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9. One can now perform the hypothesis test by comparing the two goodness of fit statistics.   

Constrained= 7.83  

  

              Unconstrained: 10.77   

10. Calculate the difference between the two chi-square statistics to obtain the test statistic.   

Test statistic:  10.77 – 7.83 = 2.94  

11. Compare the test statistic to the test’s critical value.  For instance, at a significance criterion of 

.05, the critical value of the test statistic is χ²(1) = 3.84.  Because the test statistic is lower than 

the critical value, we do not reject the null hypothesis of the test.  

C. Between-Condition Tests: Experiment-wise test  

Between-condition tests answer questions regarding treatment effects (e.g., was direct access higher for 

short lists relative to long lists?).  Running between-condition tests consist of three steps: (a) running an 

experiment-wise test in which the null hypothesis holds that all parameters are the same across all 

experimental conditions; (b) running condition-wise tests if the null hypothesis of the experiment-wise 

test was rejected, in which the null hypotheses hold that all parameters are the same between two 

conditions; and (c) running parameter-wise tests if the null hypothesis of the relevant condition-wise 

test was rejected, in which the null hypotheses hold that a parameter of the model is equal between two 

conditions (e.g., H0: J1, Condition 1 = J1, Condition 2).  

This section will begin with the instructions for an experiment-wise test. In our example, there are three 

experimental conditions, the experiment-wise test and condition-wise test are the same.   

The unconstrained model in between-conditions tests is a joint conditions model. Follow the 

instructions below to create the joint model.   

1. Enter the error-success frequencies for both conditions.   
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2. Now create a joint conditions model as follows:   

a. Click Model ---> Join Models   

  

b. Under “suffix to the parameters”, enter “C1”, to denote data from Condition 1.   

c. Under “Data set to use”, select “Condition 1”   

d. Click “Ok”   
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e. You will now see two models in the main screen. One will have the name, “merge.pt2”. This 

is the model you just created.   

   

f. Now, we have to add the dataset from condition 2. Click on the model you just created 

(merged.pt2)  

g. Model ---> Join Model  

   

h. Enter “C2” for Suffix for Parameters, and select “Condition 2” from “data set to use”   
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i. Click “Ok”   

3. The new window will show all 3 models: the original model, and the two models you just 

created. The model that has both “Condition 1” and “Condition 2” is the joint model that we 

want. Select the joint model.   

  

  

  

  

4. To include the data from Condition 3, first close the window of all models but (a) the original 

model and (b) the last joint model you created, then repeat the procedure described above  
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5. Select the model window of the Joint Model Unconstrained  

6. Delete all but the first data column of the joint model and rename the first column  

a. Go to Input Data  

b. Delete all columns but the first one  

c. Select the first column and rename it to reflect that the first column has the data from 

all conditions (e.g., Conditions 1 2 3)  

d. Click Apply  

7. Compute the goodness of fit for the unconstrained joint model you just created.   

a. Go to the Estimation, Simulation, and Power analysis window  
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b. Select the model called Joint Model Unconstrained and the joint dataset (always the 

first one)  

  
  

  

  

  

  

c. Click on Run  
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8. Note the goodness of fit of the unconstrained joint model.    

   
9. We are now ready to create the constrained joint model for the experiment-wise test.   

a. Go to the Hypothesis Test window  

  

10. Set all the parameters equal to each other among all three conditions using the Apply button.   

D1C1 = D1C2 , …, R2C2 = R2C3  (set all parameters equal among the three conditions)   
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11. Click Done when you finish  

12. The model you just created will be called “tempmodel”   

13. Obtain the parameter estimates for the constrained model.   

a. Go to the Estimation, Simulation, and Power analysis window  

  

b. Select the model called tempmodel and the joint dataset (always the first one)  
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c. Click on Run  

  

14. One can now perform the hypothesis test by comparing the two goodness of fit statistics.   

   

15. Calculate the difference between the two chi-square statistics to obtain the test statistic.   

Test statistic:  62.29 – 25.60 = 36.69  

16. Compare the test statistic to the critical value.  For instance, at a significance criterion of .05, the 

critical value of the test statistic is χ²(22) = 33.92.  Because the test statistic is higher than the  
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critical value, we reject the null hypothesis of no difference among the three experimental 

conditions.  

  

   

D. Between-Condition Tests: Condition-wise test  

There are three conditions in our example.  In this section, we show how to test the null hypothesis of 

no difference between the parameters of any two conditions in an experiment (e.g., Parameters Condition 1 

= Parameters Condition 2).  The following example illustrates a condition-wise test between Conditions 1 

and 3.  

1. Create a joint model of Conditions 1 and 3 as described in the previous section.  

  

  

  

2. Select the model window of the joint model  

3. Delete all but the first data column of the joint model and rename the first column a. Go 

to Input Data  

b. Delete all columns but the first one  

c. Select the first column and rename it to reflect that the first column has the data 

from all conditions (e.g., Conditions 1 3)  
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d. Click Apply  

4. Compute the goodness of fit for the unconstrained joint model you just created.   

a. Go to the Estimation, Simulation, and Power analysis window  

  

b. Select the model called Joint Model Unconstrained and the joint dataset (always the 

first one)  
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c. Click on Run  

  

5. Note the goodness of fit of the unconstrained joint model.    

              

6. We are now ready to create the constrained joint model for the condition-wise test.   

a. Go to the Hypothesis Test window  

  
7. Set all the parameters equal to each other between the two conditions using the Apply 

button (i.e., D1C1 = D1C3 , …, R2C1 = R2C3)  
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8. Click Done when you finish  

9. The model you created will be called “tempmodel”  

10. Obtain the parameter estimates for the constrained model.   

a. Go to the Estimation, Simulation, and Power analysis window  

  
b. Select the model called Joint Model Constrained Omnibus and the joint dataset 

(always the first one)  
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 c. 

Click on Run  

  

11. One can now perform the hypothesis test by comparing the two goodness of fit 

statistics.   

   
12. Calculate the difference between the two chi-square statistics to obtain the test 

statistic.   
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Test statistic:  35.91 – 16.20 = 19.71  

13. Compare the test statistic to the critical value.  For instance, at a significance criterion of 

.05, the critical value of the test statistic is χ²(11) = 19.68.  Because the test statistic is 

higher than the critical value, we reject the null hypothesis of no difference between 

Conditions 1 and 3.    

  

  

E. Between-Condition Tests: Parameter-wise test  

In this section, we will perform a parameter-wise test using the data from Conditions 1 and 3, namely 

the null hypothesis that R2, Condition 1 = R2, Condition 3.   

1. Construct an unconstrained joint model between the two conditions.   

2. Record the goodness of fit of the unconstrained model.   

 

3. We are now ready to construct the constrained model.    

Right Click ---> Model ---> Hypothesis Test   

4. Set equal the parameter “R2_C1” to the parameter “R2_C3”   

  
5. Click Apply, and then Click Done   
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6. As before, the model you created will be called “tempmodel”   

7. Compute the goodness of fit for the constrained Joint Model just created. Remember to click on 

the appropriate model when running the parameter estimates.   

  

8. Record the goodness of fit statistic for the joint constrained model.   

 
12. One can now perform the hypothesis test by comparing the two goodness of fit statistics.   
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13. Calculate the difference between the two chi-square statistics to obtain the test statistic.   

 

14. Compare the test statistic to the critical value.  For instance, at a significance criterion of .05, the 

critical value of the test statistic is χ²(1) = 3.84.  Because the test statistic is lower than the 

critical value, we do not reject the null hypothesis of the test.  
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