1 Introduction

Race-based preferences in college admissions evoke fierce and divided opinions on their merits, divisions that also hold among the Supreme Court justices. Of the three landmark court decisions on affirmative action that examined the use of applicant race in the admissions process, two were 5-4 decisions. While the use of explicit quota systems and point systems for minority applicants were ruled out in *Bakke v. California Board of Regents* and *Gratz v. Bollinger* respectively, *Grutter v. Bollinger* permitted the consideration of race as one of many factors in university admissions.1 Writing for the majority that Michigan’s law school admission process was constitutional, Justice O’Conner states that the constitution “does not prohibit the law school’s narrowly tailored use of race in admissions decisions to further a compelling interest in obtaining the educational benefits that flow from a diverse student body.”2 The Supreme Court currently is considering another affirmative action case in *Schuette v. Coalition to Defend Affirmative Action*, where a ban on race-based preferences was ruled unconstitutional by a lower court.

1 In *Fisher v. Texas*, the Supreme Court ruled 7-1 to remand the case back to the lower court, stating that the lower court had not applied strict scrutiny.
Whether many university admissions processes are narrowly tailored in their consideration of race – particularly at law schools – is debatable. The extent of race-based preferences varies by ethnic group, with affirmative action appearing to be most aggressive for African Americans.\(^3\) For example, the average SAT score (Math+Verbal) for African Americans entering Duke University in 2001 or 2002 was 140 points lower than the average for white students, or about 1.4 standard deviations below the white mean. For Hispanics, the gap was half that (Arcidiacono et al. 2011).\(^4\)

The motivation for affirmative action is the legacy of discrimination in the U.S., particularly against African Americans. Lyndon Johnson summed it up well in his 1965 commencement address at Howard University, where he states

\begin{quote}
“You do not take a person who, for years, has been hobbled by chains and liberate him, bring him up to the starting line of a race and then say, ‘You are free to compete with all the others,’ and still justly believe that you have been completely fair.”
\end{quote}

While \textit{Grutter v. Bollinger} established that the legality of affirmative action policies is rooted in institutions’ preferences for having a more diverse student body, President Johnson’s quote and much of the rhetoric surrounding affirmative action focuses on the desire to support the educational attainment of under-represented minority students. Certainly, the initial impetus for these policies was the hope that affirmative action could play some role in leveling the playing field for African Americans and other under-represented groups.

In this paper, we critically examine the evidence on how affirmative action in undergraduate and law school admissions affects both education and labor market outcomes. Although the effect

\(^3\)There is a myth that the primary beneficiaries of affirmative action in admissions are women. This is true only to the extent that women are members of particular racial or ethnic groups. There is now a substantial gender gap in educational attainment between men and women. The gap is particularly large for African Americans, where there are two African American women enrolled in a four-year college for every African American man. The gender gap has become so substantial that men are now more likely to receive preferential treatment in admissions than women (Green et al. 2011).

\(^4\)Because the distribution of SAT scores for African Americans lies to the left of that of whites, even without race-based preferences African Americans would have lower SAT scores than whites within a particular school because they would more likely be on the margin of being admitted. But it is certain that the gap would be much smaller absent race-based preferences.
of affirmative action on minority student outcomes is somewhat orthogonal to the success of these policies in meeting institutions’ preferences for ethnic diversity, these are important questions to consider because they highlight the potential costs or alternative benefits to these diversity goals. If, indeed, affirmative action harms long-run outcomes of minority students, it suggests that returns to diversity within an institution would need to be quite large in order to justify these programs. Conversely, if affirmative action acts to level the playing field, as originally intended, these policies may be particularly desirable because they reduce inequality and allow schools to act on their preferences for diversity.

 Revealed preference suggests that more-selective and higher-resource colleges are preferred by students to their less-selective counterparts. One then would suspect that more-selective colleges also would lead to better student outcomes. In addition, resources such as expenditures per student are higher at selective colleges, and there is ample evidence that these expenditures translate into, for example, higher graduation rates. Thus, policies that sort minority students into more selective schools, which is what affirmative action aims to do, may lead to better educational outcomes for these students. But, is increasing college quality always beneficial? As a result of affirmative action, under-represented minorities, and in particular African Americans, are placed in schools where their academic preparation is significantly below that of their white counterparts. The mismatch hypothesis argues that many of the beneficiaries of preferences are so misplaced academically that they would actually be better off in the absence of affirmative action. Although its antecedents arose much earlier, this hypothesis was popularized in academia by Sander (2004) and in the mainstream by Sander and Taylor’s 2012 book Mismatch: How Affirmative Action Hurts Students It’s Intended to Help, and Why Universities Won’t Admit It. While Sander’s original article focuses on law school students, his work with Taylor examines the evidence for the mismatch hypothesis for undergraduates as well.
At first blush, economists should be very skeptical of the mismatch hypothesis. After all, affirmative action just expands the choice set. If an individual believes a particular school would be too difficult, then the individual could simply attend another school. By revealed preference, the individual must be better off. Yet, even in the context of rational expectations, there are cases where under-represented groups would be better off in the absence of affirmative action.

Ultimately, the effect of affirmative action on student outcomes is an empirical question, and we evaluate the evidence to date on whether and how affirmative action in admissions helps its purported beneficiaries.\(^5\) Our first goal in what follows is to address the following questions:

1. Under what conditions can affirmative action actually be bad for its beneficiaries? What are the relevant outcome measures in this case? How do these outcome measures differ from what society may value?

2. How can we make the empirical specification flexible enough to allow for the possibility that increasing school quality could be welfare-enhancing for some individuals but not for others?

While the second question may seem obvious given the first, it is surprising that many papers – even when explicitly testing for mismatch – estimate models that imply attending a more selective program is good for everyone or good for no one.

Given the answers to the first two sets of questions, we then turn to what the empirical evidence has to say about affirmative action more broadly and the quality-fit tradeoff in particular. Focusing on both undergraduates and law school students, we discuss the research findings on the following questions:

3. How extensive are race-based preferences?

4. What can we learn from the debate over mismatch in law schools? Does it matter for law

\(^5\)See Holzer and Neumark (2000) for a review of the effects of affirmative policies both in education and the labor market.
school grades, bar passage, future earnings, or some combination thereof?

5. For undergraduates, on what margins does affirmative action matter? The extensive margin (whether individuals attend college at all) or the intensive margin (where individuals enroll)?

6. Conditional on enrollment, how does affirmative action affect graduation rates, choice of college major, and earnings?

7. Are “percent plans” a viable alternative to affirmative action? What effects do such admissions rules have on student outcomes and how do they compare to the estimated effects of affirmative action on those same outcomes?

As we will see, there are many ways that the quality-fit tradeoff can manifest itself, but it will be difficult, if not impossible, to say whether the purported beneficiaries are actually made worse off under affirmative action. At the same time, there is consistent evidence that the fit between the student and the university matters, at least across some dimensions. We highlight areas for future research that can help shed some much needed light on these important and unresolved questions.

The rest of the paper proceeds as follows. In section 2 we discuss the mismatch hypothesis and the conditions for it to hold given that affirmative action expands the choice sets under-represented groups face. Important to this discussion will be the quality of information individuals have about their prospects for success. In section 3 we discuss ways to empirically test for heterogeneity in the fit between the school and the student. Section 4 examines mismatch in law school, considering the initial article by Sander as well as the multiple responses it has generated in light of the issues raised in sections 2 and 3. Section 5 focuses on mismatch at the undergraduate level, including the effects of statewide affirmative action bans. Section 6 discusses percent plans, and section 7 concludes.
2 The Quality-Fit Tradeoff

The scope for affirmative action policies to benefit minority students hinges in part on the extent to which colleges are horizontally or vertically differentiated. Colleges are vertically differentiated when all students would benefit from attending more selective colleges. This could be the case because the more selective colleges provide higher monetary inputs and have higher quality students who in turn generate positive peer effects.

Colleges are horizontally differentiated when the school that maximizes the student’s human capital depends on the academic background of the student. More selective colleges may pitch their material at a higher level, move at a faster pace, and assume that certain concepts and skills already are known. It then may be optimal for some students to attend a less-selective college even if a more selective college is in their choice set. In other words, there may be an optimal match between the pre-collegiate skills of students and schools of different types that varies across the student skill distribution.

The extent to which colleges are horizontally differentiated may depend on how the benefits to the student are measured. For example, science courses may build on past knowledge in ways that other courses do not. Hence, horizontal differentiation may be more relevant when considering graduating in the sciences rather than graduating in the humanities. The extent of horizontal differentiation also may depend on what part of the college quality distribution is being examined. For example, selective colleges may be horizontally differentiated but the differences in resources among non-selective colleges may be such that vertical differentiation results.

Regardless of how the benefits are measured, assessing the importance of the fit between the student and the school requires being sufficiently flexible in how the outcome equation is specified. Namely, the returns to academic background need to vary in some way with the quality of the college.
Figure 1 shows one way in which heterogeneity in fit could be modeled. Panel (a) shows a case where College A produces better outcomes for all individuals, consistent with vertical differentiation. Panel (b) shows a case where there is horizontal differentiation: higher levels of academic background are associated with better outcomes at both colleges, but now the college that maximizes the student’s expected outcome depends on the student’s academic background. College A is a particularly good fit for someone with a strong academic background. College B, however, will not be as stimulating for those who are more academically prepared for college, as College B is geared more towards those with relatively weaker backgrounds. In this example, College B will result in better outcomes for those who are less academically prepared for college. As we discuss below, the prior literature on school quality often estimates an average effect that assumes the relationship between quality and outcomes is monotonic for all students. This assumption usually is necessitated by data and sample size limitations, but with enough data we could see whether the returns to academic background vary across different schools types.

3 The Role of Information

When students know their academic backgrounds and how their academic backgrounds translate into outcomes at different colleges, then students can optimally sort themselves among the colleges to which they have been admitted. Since racial preferences expand the choice set for under-represented minorities, when students have all the necessary information – or at least as much information as those of the colleges themselves – there is no scope for racial preferences to be harmful for minorities.

As shown in Arcidiacono et al. (2011), when students are lacking information it is possible for minority students to be made worse off as a result of racial preferences, even when these students have rational expectations. The idea hinges on students not having full information regarding their abilities to succeed in school or about the quality of their matches with particular schools. If the
Figure 1: Heterogeneity in College Benefits

(a) College A dominates College B for all levels of academic preparation

(b) College A dominates College B for the most academically prepared, College B dominates College A for the least academically prepared
university has private information about the quality of the match but does not reveal this information
to the student, then it is possible that students admitted under affirmative action would have been
better off attending a different school. This could be the case if schools admitted all students who
were a good match as well as some minority students where the matches were bad, but the schools
admitted them anyway due to diversity concerns. Suppose this latter group of students is the group
that is admitted under affirmative action. Admitted minority students form expectations of their
match quality based in part on observed average outcomes for all minority students admitted to
the school and then make enrollment decisions based on the school that maximizes their expected
utility. However, had the school revealed its private information, the student may have made a
different decision.

Information issues become even more salient when the rational expectations assumption is re-
laxed. Indeed, there is evidence suggesting that students – at least those from disadvantaged back-
grounds – have surprisingly poor information about their educational prospects. Hoxby and Avery
(2012) show that high-achieving, low-income high school students apply to schools that are very
different from their high income counterparts, often not applying to a single selective institution
despite the expected net costs of at least a set of these institutions being lower than the costs of the
non-selective institutions they attend. Hoxby and Turner (2013) show that simply providing these
high-achieving, low-income students information about their probabilities of admission to different
tiers of schools as well as information about expected costs has significant effects on the types of
colleges and universities these students attended. These students often have no desire to go to the
local school but simply are unaware of the available options. This research suggests that many high
school students have a poor understanding of how their academic background compares to average
student academic preparation across the college quality distribution. Although many low-income,
high-achieving students appear to underestimate their ability to attend elite schools, this lack of
information likely leads many students to over-estimate their qualifications as well.

Racial preferences add another layer of uncertainty as students may not know their extent. Universities generally state that race is one of many factors that are considered, so students may face significant uncertainty about the degree to which their race affected whether or not they were admitted. For example, Wightman (1998, page 70) shows that African American and white students had similar beliefs regarding their law school class rank. But, as we will see in Section 4, African American students have significantly lower grades in law school than their white counterparts.

Measuring whether affirmative action is harmful to its beneficiaries in a utility sense is a difficult task. Namely, it must be the case that by providing additional information about the prospects of success at a particular school students would make different enrollment decisions. Interventions like the one used by Hoxby and Turner (2013) are geared towards the very top of the distribution. There are no interventions of which we are aware that give under-represented groups information about their prospects of success at different tiers of institutions.

In the absence of such interventions, researchers are forced to use observed outcome measures, such as graduation and/or earnings. These measures, however, will be insufficient for establishing where minorities are actually worse off. For example, suppose we consider college graduation and could show that students admitted under affirmative action to a very selective school would be more likely to graduate from a lower-tier school. The student may still have preferred to attend the more selective school even with full knowledge of the lower probability of graduating as the individual may receive additional utility from graduating from the more selective school. We discuss below the evidence on the extent to which affirmative action policies impact minority completion and labor market outcomes in both the law school and undergraduate contexts. However, in addition to the varied identification concerns we highlight, we urge readers to keep in mind that the outcomes

6 38% of African American and 34% of white law students expected to be in the top 10% of their class. The similar percentages for finishing in the top 25% of the class were 77% and 79% for African Americans and whites, respectively.
being measured may not be capture all of the relevant aspects of how schooling choices affect utility, particularly in the long run.

4 The Law School Debate

The discussion over whether affirmative action benefits minority students has been particularly contentious in the realm of law school admissions. Estimating the effect of affirmative action in law schools differs from examining this question in the context of undergraduate admissions for several reasons. First, in contrast to what is seen for undergraduate institutions, affirmative action affects how many minority students attend law school as virtually all laws schools are selective. Hence, for law schools, it is not a matter of just where students attend but whether they attend at all. Second, the data on law schools are not as rich as the data for undergraduates.

Weighed against these disadvantages is that to practice law one must take a bar exam. The bar exam gives a measure of learning that can be compared across law schools, which typically is lacking in the undergraduate literature. While bar passage is not a perfect measure of learning, especially if lower-ranked law schools teach more to the test than do higher-quality schools, the importance of passing the bar for one’s legal career makes it a highly relevant measure of legal knowledge that also relates to the return one can expect on investment in law school. Furthermore, affirmative action is very aggressive in law school admissions, which makes this field of particular interest in understanding the effects of racial admissions preferences on student outcomes.

To illustrate the last point, we present results analyzing data on admissions decisions for Michigan’s law school in 2002, the same year when *Grutter v. Bollinger* was presented to the Supreme Court. The data contain the applicant’s race/ethnicity, LSAT scores, and undergraduate grades, as well as whether the applicant was admitted. We create an ‘academic index’ to aggregate LSAT

7 Earnings could be another measure, but affirmative action in the labor market distorts comparisons across racial/ethnic groups. One caveat with using bar passage is that the difficulty of the exam varies across location.

8 These data, along with data in 2003, were obtained by Richard Sander via a Freedom of Information Act request.
scores and undergraduate grades into one measure9 and then standardize the measure so that the mean is zero and has standard deviation one for the applicant pool.

Figure 2 shows the distribution of the re-normed academic index separately for blacks and whites based on whether or not they were admitted. For both racial groups, those admitted had significantly higher indexes. However, white students who were rejected generally look academically stronger than the black students who were admitted. Indeed, black applicants in 2002 were admitted to Michigan’s law school at a slightly higher rate than white students, 26.9\% to 23.3\%, despite the average academic index of black applicants being around 1.5 standard deviations lower than the mean white applicant.

But more striking is where the black admit distribution lies relative to the white admit distribution. The median black admit had an academic index at the second percentile of the white distribution, and the seventy-fifth percentile of the black admit distribution was at the eighth percentile of the white distribution. The data also show that the extent of preferential admissions for black students are even more pronounced at other elite public law schools, such as the University of Virginia and the University of Wisconsin. In both of these cases, the median black admit had an academic index that would place him below the first percentile of the white admit at the same school.10

The data also reveal that affirmative action works differently for blacks and Hispanics. While affirmative action is very much present for Hispanics (the median Hispanic admit at Michigan is at the 9th percentile of the white admit distribution), the median Hispanic admit is at the 78th percentile of the black admit distribution. Hispanic admission rates also were lower than those for

9The formula follows Sander and Bambauer (2012 page 896) and is given by \=((LSAT − 120) \times 10) + (100 \times UGPA).

10The median black admit at the University of Texas Texas and the University of North Carolina was below the 2nd and 7th percentile respectively of the white admit distribution. These results refer to two admissions cycles for each school: 2006 and 2007 for Michigan and Wisconsin and 2005 and 2006 for North Carolina, Texas, and Virginia. These data were obtained by Richard Sander via a Freedom of Information Act Request.
Figure 2: Distribution of Academic Indexes for Applicants to Michigan Law by Race and Accept/Reject Status

Data from 2002. Academic index is a weighted average of the applicant’s LSAT score and undergraduate GPA and is normalized to be mean zero and standard deviation one for the population of applicants.

blacks, despite having on average better test scores and undergraduate grades.11

These tabulations indicate that African American students receive a significant amount of preferential treatment in law school admissions. The extent of affirmative action in law schools is sufficiently large and the sorting on prior academic credentials is so prevalent that if mismatch is not present, law schools should be almost perfectly vertically differentiated. In other words, either the large differences in white and black pre-law school academic characteristics driven by affirmative action policies lead to mismatch or the effect of law school quality is ubiquitous. In the former case, affirmative action could lead to negative effects on African American law students, whereas in the

11Estimates of a logit model of admission with the right-hand-side variables being LSAT score, undergraduate grades, and indicators for race/ethnicity categories reveal that the admission advantage for blacks is roughly twice the advantage for Hispanics.
latter case black law students would be unambiguously better off due to affirmative action because of the positive effects of law school quality on outcomes. We now turn to a discussion of the often contentious debate about the empirical support for both of these hypotheses.

4.1 Graduation and Bar Passage

4.1.1 Sander (2004)

The law school debate began with Sander (2004), who argued that large admission preferences resulted in blacks learning less in law school and consequently failing the bar at a higher rate. Sander speculated that these learning effects were sufficiently large to actually result in fewer black lawyers than if racial preferences were not in place. He also argued that the loss of black lawyers occurs despite racial preferences increasing the number of black students who enroll in law schools as i) those students who are at the margin of being admitted have a relatively low probability of passing the bar exam and ii) being severely mismatched results in low bar passage rates.

Using data from the Law School Admission Council Bar Passage Study (BPS), Sander (2004) shows that, aside from those attending historically black universities, black students perform very poorly in law school in terms of grade point average. In particular, the bottom decile of the grade distribution contains between 44 and 52 percent of black students, depending on law school tier. Since grades are a relative measure of performance and since there are large differences in entering credentials between blacks and whites, it is perhaps not surprising that black students are more likely to be at the bottom of the GPA distribution.

Consistent with the mismatch hypothesis, Sander also argues that poor law school performance has negative consequences for later life outcomes and that these negative consequences are larger

\[12\] This data set follows 1991 law school matriculants. While participation in the study was high for both law schools and their students, 95% of law schools participated and 80% of the students signed consent forms. The primary disadvantage of the data is that school quality was aggregated into six broad tiers.

\[13\] Recall that black students had similar expectations to white students with regard to their expected law school class rank. To the extent that these subjective expectations reflect actual beliefs, the results suggest black students were either unaware of the extent of affirmative action or unaware of how credentials translate into law school performance.
than the benefits of going to a more elite school. The motivation for looking at long-run outcomes is that black students are much less likely to pass the bar than are white students. Sander hypothesizes that a reason for this difference is that affirmative action results in black students attending schools where they lack the necessary academic preparation, which in turn lowers the quality of their education.

To test this assertion, Sander breaks out LSAT scores into bins for both blacks and whites. Within each bin, white students are more likely to graduate and more likely to pass the bar. Now, it is likely that within each bin black students may be weaker on other characteristics. Sander then estimates models of graduation and bar passage which condition on race, entering academic credentials, law school grades, and law school tier. For both outcomes, no race effects are found, with both normalized law school grades and law school tier having positive effects. Sander argues that the negative indirect effect of law school tier that operates through lower grades is stronger than the positive direct effect. This finding implies that attending a higher-tiered law school lowers the probability of graduating and passing the bar, particularly for less-academically-qualified students. The assumption underlying this claim is that absent affirmative action, class rank would be uncorrelated with race. With affirmative action, however, Sander shows black students’ normalized grades are two standard deviations lower than the mean.

Taken at face value, the estimates in Sander (2004) suggest that attending a more elite law school lowers one’s chances of graduating and passing the bar regardless of one’s entering credentials. However, these conclusions are based on three main identification assumptions that highlight the difficulty of the selection problem being addressed. First, in this specification all student characteristics enter linearly, and thus the slope coefficient on GPA does not vary by law school tier. Therefore, the specification only allows for two possibilities: everyone benefits from attending a more

\[14\] When graduation is the outcome measure, first-year grades are used instead of overall grades.

\[15\] By normalized grades we mean grades have been normalized to have zero mean within each school. This can alternatively be interpreted as a measure of student relative rank within each school.
elite school or no one benefits. A problematic conclusion one could draw from Sander’s results is that *everyone* is harmed by going to a more elite law school, as the negative effect on GPA swamps the positive direct effect of school quality.

All subsequent law school mismatch studies are subject to this same criticism, with the exception of a part of Sander (2005b). Here, Sander allows curvature in the relationship between grades and outcomes. Namely, Sander bins percentile class rank and, within each bin and law school tier combination, estimates the joint probability of graduating and passing the bar on the first attempt. The results reveal a substantial penalty for finishing at the bottom of the class across law school tiers. This suggests the possibility of increasing eliteness being beneficial up to a point. As long as a student is reasonably competitive, the student can reap the benefits of the elite education. Hence, for the objectives of maximizing black student graduation and bar passage, there may be an optimal affirmative action policy that falls in between the current policy and race-blind admissions.\(^{16}\)

The second identification concern in Sander (2004), which also is faced by the rest of this literature, is selection into law school tiers. Of particular importance in Sander’s specification is the role for selection on observables when he includes normalized law school grades in the outcome equation, as these are clearly affected by law school tier. Under certain assumptions, however, this is exactly how to separate the effects of law school tier into a direct effect and an indirect effect that operates through law school grades, which is a key component in Sander’s calculations of how racial preferences affect bar passage. To fix ideas, denote \(Y_i, G_i, L_i, \) and \(X_i\) as individual \(i\)’s outcome (such as bar passage or earnings), normalized law school grades, law school tier, and other observable characteristics such as pre-law school academic credentials. Assume that \(Y_i\) and \(G_i\) can be decomposed

\[^{16}\text{This point is not explored further in Sander (2005b), as this piece was primarily a reply to criticisms levied against Sander (2004).}\]
as follows:

\[Y_i = \alpha_1 + G_i \alpha_2 + L_i \alpha_3 + X_i \alpha_4 + \epsilon_i \] (1)

\[G_i = \gamma_1 + L_i \gamma_2 + X_i \gamma_3 + \eta_i \] (2)

Sander’s claim that mismatch negatively influences post-graduation outcomes amounts to a claim that \(0 > \alpha_3 + \alpha_2 \gamma_2 \). The main identification assumptions are that \(\eta_i \) and \(\epsilon_i \) are independent of each other and of \(L \).\(^{17}\) Put differently, conditional on the set of observables, \(X \), both law school tier and normalized grades are exogenous. If this assumption holds, regressing the \(Y_i \) on the explanatory variables besides \(G_i \) will give an estimate of the coefficient on \(L_i \) of \(\alpha_3 + \alpha_2 \gamma_2 \). In this case, we can break out the effect of law school tier into the two components: the direct effect and the indirect effect through law school grades.\(^{18}\)

This identification assumption is difficult to justify and has led to several of the criticisms of Sander (2004) that we discuss below. Thus, it is instructive to assess the likely direction of biases that can emerge from different forms of selection on unobservables. We consider two extreme cases that highlight how different forms of selection will alter the conclusions one can draw about mismatch from estimating equation (1). First, suppose there is selection on unobservables into law school tier that is constant across students. That is, students at the top tier all have higher unobserved abilities that positively relate to future outcomes relative to their observationally-equivalent counterparts at lower-tier schools. Such selection will bias the coefficient on \(\alpha_3 \) upward. But, there will be no effect on the estimate of law school grades as this type of selection will not affect relative rank within each school. The resulting bias will lead one to understate the amount of selection. Conversely, if

\(^{17}\) Note that under these assumptions, \(\epsilon \) would be independent of \(G \) as well.

\(^{18}\) Ho (2005) raises concerns about controlling for law school grades in the outcome equations because they are themselves affected by law school quality. Rosenbaum (1984) shows that controlling for a variable that is affected by the treatment can produced biased treatment effect estimates. However, he also shows that in a selection-on-observables setting, both the treatment and the mediating variable coefficients are identified as long as the observable characteristics are sufficient to account for selection into the treatment.
law schools have no value-added for students in terms of future outcomes, then relative grade rank will completely reflect unobservable ability differences across students within each school. That is, \(\alpha_2 \) will be biased upward. If there is no selection on unobservables across tiers in this case, then equation (1) will overstate the extent of mismatch. Thus, depending on the form of selection on unobservables, Sander (2004) could be overstating or understating the effect of mismatch in law schools.

The third identification issue faced by Sander (2004) stems from his comparison of the outcomes of white and black law students with similar credentials who attend different law schools of differing quality. The implicit assumption is that the unobserved abilities of blacks at elite schools are similar to the unobserved abilities of whites at non-elite schools conditional on the same observed credentials. This is a valid comparison if, absent affirmative action, the relationships between grades, pre-law school characteristics and bar passage would be the same for whites and blacks. Sander thus is essentially using white students as a control group and simulating the effect of affirmative action for blacks using coefficients identified off of whites.

4.1.2 The Ensuing Debate

The difficulties posed by selection-on-unobservables in identifying mismatch effects in law school has led to a vigorous and often contentious debate about the validity of Sander’s conclusions. Due in part to the concern that grades represent an endogenous mediating variable, much of the ensuing work on law school mismatch focuses on identifying the effect of law school tier net of the grade effect. That is, it seeks to identify \(\alpha_3 + \alpha_2 \gamma_2 \) by estimating a regression of a given outcome on tier indicators, controlling for observable student characteristics. A negative estimate of the effect of quality tier in such a model provides evidence of mismatch. While examining the net effect of tier sidesteps the difficulties associated with the endogeneity of relative law school grades, these analyses also faces identification concerns related to selection-on-unobservables that stem from the
same selection problems discussed above.

Rothstein and Yoon (2008b) is the only other paper to pursue black-white comparisons in order to assess mismatch effects. They estimate probits of bar passage and graduation, controlling for observed credentials and race but do not control for tier. The idea is that if the observed credentials can account for differences in law school preparation between blacks and whites, then the coefficient on black will pick up the net effect of racial preferences on the outcomes variables. Estimates of this model show that blacks are much less likely to graduate and to pass the bar even conditional on the observables, which is consistent with the mismatch hypothesis. However, at the bottom of the credential distribution there is very little overlap in credentials between black and white students due to racial preferences affecting the extensive margin. Those white students with poor credentials are likely to have stronger unobservables than similarly-credentialed black students, else they would not have been accepted to any law school. To address this concern, Rothstein and Yoon (2008b) report estimates using both white and minority students that focus only on the top four quintiles of the academic index, which is where the white and black academic index distributions have the most overlap. Examining the top four quintiles only removes the negative effect of tier on law school graduation and cuts the effect on bar passage by more than half, rendering it insignificant. The problem with focusing on the top four quintiles, however, is that three quarters of the black students fall in this bottom quintile (Rothstein and Yoon 2008b, page 18), and it is these students who are most at risk of being mismatched.

Rothstein and Yoon (2008b) also estimate models of bar passage and graduation separately for black and white students controlling for law school tier as well. This is also the strategy pursued by Ho (2005) and one of the strategies in Ayres and Brooks (2005) and Williams (2013), and we refer to this method as the within-race analysis. Rothstein and Yoon (2008b) argue that this model provides a lower bound of the extent of mismatch, which assumes that unobservable ability of black
students is higher at more selective school tiers. Ho (2005) and Rothstein and Yoon (2008b) both find estimates that suggest law school tier has no effect on eventual bar passage using the within-race analysis, but these findings could be heavily influenced by this selection process.

Williams (2013) argues that their results further understate mismatch due to the noisiness of the law school tier measure as well as their focus on eventual rather than on earlier bar passage. Williams (2013) finds negative effects of selectivity on both first-time and eventual bar passage, although only the former are statistically significantly different from zero. Additionally, the estimated effects increase when the top two tiers are compared to the bottom two tiers as opposed to comparing the top two tiers to the bottom four, as in Rothstein and Yoon (2008b). One caveat is that historically black colleges and universities are in this bottom tier and may operate differently from traditional law school environments.

As a way of mitigating differences in unobservables among black students attending different law school tiers, Ayres and Brooks (2005) and Williams (2013) pursue an identification strategy in the spirit of Dale and Krueger (2002). Namely, comparisons are made between black students who attended their first-choice law school and those who reported being admitted to their first-choice law school but attending their second-choice (or lower-quality) law school, either due to cost or distance considerations. The descriptive statistics reveal that black students who attend their first-choice school have similar credentials and background characteristics to those who attend their second choice. However, first-choice students placed more importance on academic reputation and less importance on cost than second-choice students. Second-choice students then attended schools that were relatively less selective. A core assumption underlying this method is that students who

19 As shown in Sander (2004, page 416), with the exception of historically black schools, the observed credential gap between whites and blacks is similar across tiers, as all these schools practice affirmative action.

20 Ayres and Brook (2005) remove these schools in their analysis of eventual bar passage and positive effects of selectivity for blacks when tier is included linearly. Sander (2004) also includes tier in this way. In both cases, it is more appropriate to have only two tiers or dummy out the effects of each tier.

21 See Section 5.5 for a more complete description of this methodology.

22 For ease of exposition, we refer to these students as attending their second choice school even though the school they attend could be even further down their list.
were admitted to the same types of schools but who attend schools of differing quality have the
same unobservable characteristics.

Results using this identification strategy point towards small positive effects of attending a more
selective school on graduation that often are not statistically significant. But, both Ayres and
Brooks (2005) and Williams (2013) find that black students who attend their second choice (and
thus lower-quality) school are more likely to pass the bar the first time they take it, which is evidence
consistent with mismatch. Ayres and Brooks (2005) find insignificant effects for passing the bar at
a later date, however. Consistent with earlier bar passage results, estimated mismatch effects on
the bar exam are strongest earlier on in the career. One interpretation of this finding is that the
negative effects of mismatch will be undone over time, but delayed bar passage likely has steep costs
associated with it, such as reducing earnings and putting lawyers at a competitive disadvantage in
the labor market.23

The law school debate over Sander (2004) has been especially contentious. We find the evidence
on passing the bar the first time to be fairly convincing, especially since the low quality of the data
would tend to bias estimates away from finding mismatch. On the other hand, an argument could
be made that the data are too noisy and provide sufficiently imprecise information on actual law
school quality that they preclude one from drawing any concrete conclusions regarding mismatch.
Regardless, the law school debate makes clear that this is a question that merits further attention,
where more definitive answers could be answered with better data. Our hope is that better data
sets soon will become available.24

23 Williams (2013) also argues that the measurement error in the law school tier variable results in attenuation
bias. Hence he instrumented for law school tier with the second choice variable, resulting in massive mismatch effects.
However, the estimated effects are so large as to not be plausible.

24 In Sander v. State Bar of California, the California Supreme Court ruled unanimously in favor of Sander’s petition
for access to a de-identified version of their data, stating “We conclude that under the common law right of public
access, there is a sufficient public interest in the information contained in the admissions database such that the
State Bar is required to provide access to it if the information can be provided in a form that protects the privacy of
applicants and if no countervailing interest outweighs the public’s interest in disclosure.”
4.2 Labor Market Outcomes

Sander (2004) also argued that affirmative action lowers the earnings of black lawyers, using data from After the JD (AJD). In 2002, the AJD surveyed those who became lawyers (i.e. passed the bar) in 2000.\(^{25}\) As with bar passage and graduation, the mechanism for the earnings result is that attending a more elite school has a positive direct effect on earnings but also a negative indirect effect through law school grades. Sander argues that the negative indirect effect is stronger than the positive direct effect, again assuming that differences in normalized law school grades will disappear after affirmative action is eliminated. That this impact still is present even after selecting on bar passage, which itself appears to be affected by mismatch, is notable.

Rothstein and Yoon (2008b) is one of the few studies that also addresses the earnings question, using data from the BPS dataset. The BPS followed a sub-sample of the initial participants four to six months after they graduated from law school. Using the same identification strategies they used for bar passage, Rothstein and Yoon find higher earnings for blacks from attending more selective schools.\(^{26}\)

Beyond the differences in identification strategies, a potential way to reconcile the two sets of results come from Lehmann (2013). Lehmann develops a model of hiring and promotion when firms face diversity pressures. Using the AJD, Lehmann shows that black lawyers have better early labor market outcomes, consistent with a model where the cheapest way to satisfy diversity pressures is with newly-minted lawyers. After hiring, however, black lawyers receive worse tasks and are less likely to be promoted. Lehmann’s results point to the difficulty of comparing black and white outcomes when affirmative action is present in the labor market, as well as pointing out that these sorts of comparisons may change with the age of the cohort.

\(^{25}\)The AJD has the actual school that the lawyer attended. However, law school grades are self-reported in bins, so adjustments need to be made to renormalize them.

\(^{26}\)They also find that black students at elite schools were also more satisfied with their jobs than matched students of either race at less-elite institutions.
4.3 The extensive margin

In contrast to undergraduate institutions, almost all law schools are selective. Hence, an affirmative action ban may result in some minority law school applicants, who would have been admitted prior to the ban, being unable to obtain admission to any law school. Assuming that the number of black applicants would remain unchanged and that their admissions and application behavior would now match those of whites with similar LSAT scores and grades after an affirmative action ban, Wightman (2003) estimates a 14.1% drop in the number of black applicants who would be admitted to law school if an affirmative action ban were passed that was based on applications for law schools admissions in 2001. This is the number Sander (2004) uses in his calculation of the extensive margin.

Both Chambers et al. (2005) and Rothstein and Yoon (2008a) argue that this number is too low. Rothstein and Yoon (2008a) use a grid model for 1990-91 and show there would be a 60% drop in law school enrollees, with a 90% drop at the most-selective schools. Chambers et al. (2005) extend the grid model in Wightman (2003) to other years, showing that in 2003 and 2004, the most recent years available at the time, the decline would be much higher, at 32.5% in 2004.27 Chambers et al. (2005) also argue that the drop in admissions may translate into lower take up rates, but there are not data to provide support for or against this claim.

There are at least two reasons, however, why estimates of the extensive margin may be overstated. First, the grid model assumes after a ban that black applications will look like white applications. But the least selective law schools are historically black institutions, which are likely more appealing to black applicants than white applicants.28 How historically black institutions

27 Sander (2005b) argues that those two years are outliers driven by a surge of white applications, looking over the previous ten years suggests that the 14.1% number is representative. The magnitude of the extensive margin may depend on whether what was happening in 2003 and 2004 reflects permanent or temporary change in application behavior.

28 Rothstein and Yoon (2008a) predict an 84% drop in minority enrollees at HBCU’s, which they acknowledge is too high. However, they argue that the movement towards HBCU’s would come in part from other law schools resulting in those schools being even less diverse.
would respond to a surge in black applications following an affirmative ban is an open question.\footnote{Of course, having the extensive margin being somewhat removed due to historically black institutions may be unsatisfying, harkening back to ‘separate but equal’ education.} Second, universities may respond to affirmative action bans by looking at other ways of increasing diversity by, for example, putting more weight on characteristics that are correlated with particular races.\footnote{See Chan and Eyster (2003) and Fryer, Loury, and Yuret (2008) for models of how these adjustments could occur in equilibrium.} Yagan (2013) provides evidence of this, looking at law school applications from an elite college to UC Berkeley and UCLA before and after Proposition 209, which banned the use of racial preferences in admissions. Yagan shows that although admissions probabilities fell substantially for black applicants after Proposition 209, black applicants still had an advantage in admissions over white applicants after controlling for a set of observed credentials. Long and Tienda (2008) show qualitatively similar results in Texas.

5 Undergraduate decisions and outcomes

5.1 The Extent of Racial Preferences

Unlike in the law school setting, affirmative action is present only at a subset of all undergraduate institutions. In The Shape of the River, Bowen and Bok (1998) argue that only 20 to 30% of four-year colleges practice racial preferences, as most schools simply are not selective. These results are consistent with Kane (1998) and Arcidiacono (2005), who both estimate models of admissions using nationally-representative data in which students self-report where they have been admitted. Both find that racial preferences are large at the top schools, with little scope for racial preferences at the bottom schools.

At these top schools, however, racial preferences result in substantial differences in academic backgrounds between majority and minority enrollees.\footnote{Kane (1998) points out that even in the absences of racial preferences minorities would on average have lower test scores within each school given that lower minority test scores would place them more on the margin of being admitted. Given the magnitude of the differences in the entering credential of enrollees, however, it is clear that racial
which focuses on a set of highly-selective colleges, Arcidiacono, Khan, and Vigdor (2011) show within-school SAT score gaps of at least 140 points.

It is typically difficult to get information on the accept-reject decisions of universities. But there are data from the University of California (UC) system, acquired under a Freedom of Information Act, that can be used to open the black box of university admissions. This individual-level data set covers applicants from the years 1992 to 2006 and follows these individuals through to graduation. While missing many covariates that are likely of importance (such as gender), the data contain a continuous measure of academic preparation. Namely, they include academic index, which is a weighted average of the student’s SAT score and high school grades. We standardize the academic index so that it has zero mean and standard deviation one for the set of individuals that applied to a UC school during this period.

The data show that half of the minority applicants who applied to UC Berkeley were admitted compared to 35% of white applicants. Minority applicants to UC Berkeley had significantly higher probabilities of being admitted despite academic indices that were almost one standard deviation lower than white applicants. Figure 3 shows the academic index distribution for those admitted and rejected by UC Berkeley for both minority and white applicants. For both minority and white students, admits have academic indices on average around one standard higher than rejects. But the median white reject has an academic index higher than the median minority admit. In fact, the median minority admit’s academic index would be at the seventh percentile of the white admit distribution.

To further demonstrate the extent of racial preferences at UC Berkeley during this period, Figure

32 This is the same data set as used in The Shape of the River.
33 The SAT score here includes only the verbal and math sections.
34 The year the individual applied is given only by its three-year interval. In 1998, Proposition 209 was implemented, which banned the use of racial preferences in California. Hence, two (three) three-year periods are offered before (after) the implementation of Proposition 209. See Antonovics and Sander (2013) for a fuller description of the data.
35 The SAT score is rescaled on a range from 0 to 600 and high school grades are rescaled from 0 to 400. The two numbers are then added together.
Data source: UCOP, years 1995-1997. Academic index is a weighted average of the student’s SAT score and high school GPA and is normalized to be mean zero and standard deviation one for the population of applicants.

Figure 4 compares the academic index distribution for minority admits at UC Berkeley to the academic index distribution for whites who applied to any UC school. The distributions look remarkably similar: randomly drawing from the pool of white students who applied to any UC school would produce an academic index distribution similar to that of minority admits at UC Berkeley.

As shown in Antonovics and Backes (2014), UC Berkeley had the largest racial preferences in the UC system. After conditioning on a set of observables, minorities had increased chances of admission at the top four UC schools, ranging from 40% at UC Berkeley to 21% at UC San Diego. Minority advantages were smaller at the next set of schools, likely for two reasons. First, there is less scope for racial preferences at the bottom set of schools. For example, for those who applied to UC Santa Cruz in this period, both whites and minorities had an over 80% chance of being admitted.
Data source: UCOP, years 1995-1997. Academic index is a weighted average of the student’s SAT score and high school GPA and is normalized to be mean zero and standard deviation one for the population of applicants.

Second, selection on unobservables is likely stronger at more elite schools as a result of minorities being aware of affirmative action. Those applying to the bottom schools probably were aware that their chances of admission were lower at UC Berkeley, despite racial preferences.

Dillon and Smith (2013) provide some additional information on how affirmative action affects sorting using NLSY97 data. Their paper is focused on characterizing the extent of academic mismatch more generally, which they define as differences between student rank on the Armed Services Vocational Aptitude Battery (ASVAB) test given to NLSY97 respondents and college rank on an index of quality constructed from several measures of institutional characteristics. This analysis has the value of being nationally-representative, although their small sample precludes them from examining mismatch along the college quality spectrum.
While the aim of Dillon and Smith (2013) is measuring and characterizing overall mismatch in higher education, they show some evidence that speaks directly to mismatch that might be caused by affirmative action. In particular, they show that despite the clustering of black students in lower-quality schools, they are much more likely to be “over-matched” and less likely to be “under-matched” than whites.36 This is somewhat mechanical, as blacks have lower test scores and hence are naturally more likely to be over-matched than under-matched relative to whites. Surprisingly, Dillon and Smith (2013) also show that black students are no more likely than whites to be over-matched or under-matched given the same test scores and high school grades. However, this finding only holds when focusing just on more selective four-year students. When two-year and non-selective four-year students are included, blacks are more likely to be over-matched than whites conditional on credentials.

Dillon and Smith’s findings highlight the importance of understanding how affirmative action at selective colleges affects sorting of black students among non-selective colleges, which is still an open question. Some insight can be obtained by looking at the share of black students at different levels of college selectivity. Arcidiacono, Khan, and Vigdor (2011) show how the share of black students varies with the average SAT score of the school using data from U.S. News & World Report for 1991. Figure 5 is reproduced from their paper. The figure shows a U-shaped pattern, where the lowest and highest quality schools, as measured by the average SAT scores of their student body, have the highest share of black students.

There are three possible explanations for the U-shaped curve shown in Figure 5. First, affirmative action at the top schools can lower the share of black students in the schools just below them. To the extent that the fall in the black share at this next set of schools makes them less attractive to black students (for example, they are perceived as not having a critical mass), these students may choose to

36“Over-matched” (“under-matched”) is defined as the ASVAB rank being more than 20 points below (above) the college rank.
Data Source: America’s Best Colleges produced by U.S. News & World Report for 1991

attend lower quality schools where, conditional on their credentials, they are overmatched. Another possibility is that the middle-tier schools practice less affirmative action. Third, black students may be less-informed on average about their college possibilities. As illustrated by Avery and Hoxby (2012), those who are economically-disadvantaged seem to make poorer college choices than their wealthier counterparts. Economically-disadvantaged blacks may then choose colleges at the bottom of the quality distribution even though they would have been a better match for a school in the middle of the quality distribution.

Regardless of the reasons for the U-shaped pattern, the removal of affirmative action would
affect the sorting of black students into selective colleges. By altering minority college enrollment behavior, removing or restricting racial preferences could impact minority graduation rates, major choices and the returns to college that they experience in the labor market. Below, we discuss what is known about how affirmative action policies and affirmative action bans affect each of these outcomes, as well as highlight questions that remain for future research.

5.2 Enrollments

Before discussing the effects of affirmative action policies on longer-run outcomes such as college completion and wages, we provide a summary of the evidence on how affirmative action affects minority enrollment behavior, both overall and across the higher education quality distribution. Many of the effects of affirmative action on student outcomes flow through changes in whether and where students enroll, and thus understanding the effect of racial admissions preferences on minority enrollment is an important first step in thinking about these broader outcomes.

Figures 3 and 4 are highly suggestive that affirmative action policies act to sort minority students to more selective schools, which implies that repealing them will lower minority representation at these schools. Structural models of how students sort into schools by Arcidiacono (2005) and Howell (2010) have been used to predict how the removal of affirmative action affects both the extensive margin (whether students enroll at all) and the intensive margin (where they enroll). Both of these papers have individuals make their application decisions based on expectations regarding their probabilities of admittance. These models predict substantial reductions in the share of minority students attending the most-selective schools following a ban but, because many schools are non-selective, they predict little effect on the share of minorities enrolled in four-year colleges overall.37

Recent affirmative action bans allow us to address how affirmative action affects enrollment

37Epple, Romano, and Sieg (2008) calibrate a general equilibrium model of how students sort into colleges when colleges are vertically differentiated. In their model, schools adjust their admissions decisions in reaction to an affirmative action ban so as to attain more diversity by weighting characteristics correlated with race more heavily. They too show substantial predicted reductions in enrollments at top tier colleges.
decisions directly. The enactment of these bans provides quasi-experimental variation in affirmative action policies, and a large portion of studies on which we will focus in this and subsequent sections examines these policy changes. Table 1 shows the timing of the bans in each state as well as the source of each ban’s enactment. The bans come from a mix of sources, ranging from voter initiatives to executive orders and court rulings. The variation in time and location of these bans provides useful variation with which to identify the effect of affirmative action policies on college outcomes.

Consistent with the structural predictions, the general consensus from empirical analyses of affirmative action bans is that elimination of race-based preferences reduced under-represented minority student enrollment at flagship and elite public schools but had little impact on the overall likelihood of four-year college enrollment. Kain, O’Brien and Jargowsky (2005) examine enrollment behavior among Texas public college attendees between 1991-2002. They show evidence that when affirmative action was banned in 1997, minority enrollment dropped substantially at the state flagship schools – University of Texas at Austin and Texas A&M-College Station. In the two years post-\textit{Hopwood}, the number of black students enrolling at UT-Austin dropped to 68% of the pre-\textit{Hopwood} level and dropped to 72% of the pre-ban level at Texas A&M. Hispanic enrollment also declined by 6 and 25 percent of the pre-ban levels at UT-Austin and Texas A&M, respectively. However, white enrollment jumped by 7% at these schools, which is consistent with affirmative action bans reducing enrollment levels among under-represented minorities at elite public schools when race-based admission policies are eliminated. Long and Tienda (2008) complement these results using administrative data from the pre- and post-ban eras at Texas A&M and UT-Austin. They estimate probit regressions of admission at these schools and show that post-\textit{Hopwood}, these schools no longer gave independent weight to race and ethnicity in admissions.

Hinrichs (2012) and Backes (2012) exploit the timing of affirmative action bans across several of the states shown in Table 1 to estimate difference-in-difference models of college enrollment. Using
data from the American Community Survey and the Current Population Survey, Hinrichs (2012) shows that affirmative action bans had no overall effect on the likelihood minority students attended any college or attended a four-year college. However, with IPEDS data on college enrollment by race and institution, he shows bans led to large declines in black and Hispanic enrollment shares at more elite universities. Backes (2012) shows very similar results using an expanded time frame and a more detailed set of institutional quality measures.

Research on enrollment responses to affirmative action bans also shows that most of the enrollment effect came from changes in admissions behavior: application patterns among minority students changed little following affirmative action bans (Card and Krueger, 2005; Antonovics and Backes, 2013).\(^{38}\) Thus, affirmative action bans alter admissions rules such that minority students are less likely to gain admittance to more elite in-state, public schools. This reduces the quality of schools these students attend, although it does not affect the likelihood under-represented minority students enroll in a four-year college. In what follows, we discuss the potential effects of this type of re-sorting on college graduation, college major, and labor market returns to college investment.

5.3 Graduation

Affirmative action policies can influence graduation rates through two conflicting mechanisms. As discussed in Section 5.2, race-based admissions policies can have a sizable influence on the distribution of minority students across schools of differing quality. The Texas and California experience with banning affirmative action had a large impact on the representation of minority students at the more selective, in-state universities. The mismatch hypothesis predicts that banning race-based admissions could increase the rate at which they graduate from college. This would occur because students are now better matched academically for the schools in which they enroll.

\(^{38}\)Long (2004) compares changes in SAT score-sending rates among white and minority students in the late 1990s and finds some evidence of a relative decline in minority applications to the top in-state institutions, especially in California. However, he also shows similar patterns in applications to private and out-of-state colleges, which is inconsistent with these patterns being driven by affirmative action changes.
However, there also is a growing literature suggesting that college quality and collegiate resources that are strongly correlated with measures of college quality exert an independent influence on students’ abilities to obtain a college degree. If such college quality effects are large for students affected by race-based admissions policies, then affirmative action policies could raise collegiate attainment amongst under-represented minority students.39

5.3.1 Graduation and College Quality

We begin this section with an overview of the literature on the effect of college quality on BA completion. Table 2 shows six-year graduation rates across different higher education sectors in the United States for the 2011-2012 school year. We split the four-year higher education sector into four mutually exclusive and exhaustive groups: flagship public universities,40 non-flagship public universities, highly-selective private schools, and less-selective private schools. The highly selective private schools are the top-65 private universities and colleges according to the 2012 US News and World Report rankings as well as the top-50 liberal arts schools. We have chosen to categorize the higher education market in this way because these sectors represent the broad choices students face when deciding what type of college to attend. The differences across the tiers are substantial: public flagships and elite privates have six-year graduation rates of 70.2% and 86.8%, respectively, compared to between 44-48% in the other two sectors. These differences are particularly pronounced for Hispanic and black graduation rates, which highlights the potential importance of school quality.

39It also is possible that affirmative action affects graduation through lowering effort amongst high-achieving minority students prior to college. If in equilibrium, affirmative action leads to employers believing minority students graduating from more elite schools are lower-productivity, this reduces effort incentives (Coate and Loury, 1993). Conversely, affirmative action bans could lower minority human capital investment by making it less likely they will gain access to higher-quality colleges that may have higher returns (see Section 5.5). The effect of affirmative action on student effort is important to identify in assessing the impact of race-based admissions on student outcomes, but there has been little research to date that focuses on this question. Preliminary evidence in Hickman (2013) and Caldwell (2010) are consistent with affirmative action raising effort levels among minority students, but this question has not been studied sufficiently to allow us to draw strong conclusions about the direction and magnitude of any such effects. We view this as an important topic for future research.

40The flagship public schools are straightforward to identify. See Lovenheim and Reynolds (2013) for a description of this classification.
for these groups. In addition, the table shows resource differences across sectors in terms of student-faculty ratios, per-student expenditures and faculty salaries. For all measures, the highly-selective private schools have much higher resource levels than any other sector, with public flagships also having substantially more resources than lower-ranked public and private schools. Thus, affirmative action bans that re-sort minority students from flagship universities to non-flagship public schools will in effect reduce the amount of postsecondary resources to which these students have access, which in turn could lead to worse postsecondary outcomes.

The graduation rate differences across sectors shown in Table 2 also reflect factors that make it difficult to identify the causal effect of college quality on graduation. Due to the nature of how students select into different quality tiers as a function of pre-collegiate academic training, the most academically qualified students sort into the highest-quality schools. The outcome differences across school types thus could reflect prior academic training, and it therefore would be incorrect to extrapolate these graduation rates to students who were admitted under an affirmative action policy. Additionally, it is possible that collegiate resources have heterogeneous effects on students with different pre-collegiate academic abilities, which forms the basis of the mismatch hypothesis.

The literature on the effect of college quality on graduation rates attempts to control for differences in the pre-existing academic capabilities of students in order to isolate the role of college quality.\footnote{In this literature, the terms “college quality,” ”college resources” and ”college selectivity” are used interchangeably. We follow that convention here.} Although not without its difficulties in terms of causal identification due to the college selection process, prior work shows consistent evidence that college quality has a large and positive effect on the likelihood a student graduates from a four-year school on average.\footnote{Prior research also has addressed the question of whether starting college in a two-year school versus in a four-year school affects the likelihood of BA receipt. Rouse (1995) shows evidence from community college openings that some students are diverted from a four-year school and are less likely to complete a BA as a result. Using matching methods to help account for the non-random selection of students across school sectors and the non-overlap in observable characteristics between two- and four-year students, Long and Kurlaender (2009), Reynolds (2012) and Doyle (2009) all report large negative effects of two-year attendance on eventual BA receipt. Because most affirmative action policies affect admission and enrollment at four-year schools due to the open-enrollment nature of community colleges, we restrict our attention to the literature that focuses on that sector.} Bound,
Lovenheim and Turner (2010) show evidence from the National Longitudinal Survey of the High School Class of 1972 (NLS72) and the National Educational Longitudinal Study of 1988 (NELS:88) that once one controls for an extensive set of student background characteristics, including high school test scores, large completion differences across college quality tiers still remain. The NLS72 and NELS:88 datasets are nationally-representative and follow the high school classes of 1972 and 1992, respectively, as they transition to college and then into the workforce. Their categorization of schools follows closely with the one presented in Table 2, and their estimates indicate that students beginning college at a top-50 public school or at an elite private school are significantly more likely to obtain a BA within 8 years than are students who begin college at less-selective four-year public schools. Furthermore, this gap grew substantially across cohorts, suggesting that college quality is becoming more important over time. The focus of their paper is on documenting and explaining the declines in completion rates across the two surveys, and their results suggest that declining collegiate resources and shifts in the student enrollment distribution to less-selective schools can explain the entire observed decline in completion rates. These results underscore the importance of college quality changes in driving completion rate patterns.

Bound and Turner (2007) use a different and novel source of variation in school quality derived from population variation to identify the role of collegiate resources on graduation that is less prone to the biases associated with the selection-on-observables approach. Their insight is that relatively large cohorts of students represent a demand shock for college. Since the supply of spaces at higher-resource schools tends to be inelastic, and since state funding responds to demand increases with long lags, students born in larger cohorts are less likely to attend a selective school and probably experience lower resources when they are there. They term this phenomenon “cohort crowding.” Using variation in birth cohort size, they show that a 10 percent increase in the birth cohort size translates into a 0.4 percent decline in the proportion of the cohort who obtain a BA. Furthermore,
the crowd out effects are larger among the less-selective in-state schools. These results indicate that school resources, and thus school quality, are indeed causally linked to student BA attainment rates.

Another source of variation researchers have used to inform the question of how college quality affects college graduation rates is state merit aid systems. State merit aid programs are prevalent and growing in the US, and they offer higher-performing students scholarships to attend college in-state. Cohodes and Goodman (2013) study the Massachusetts Adams Scholarship that provides free tuition (but not fees) for high-performing students in Massachusetts. Using a regression discontinuity design surrounding the state test score eligibility cutoffs, they show that becoming eligible for this scholarship reduced college quality by shifting students from higher-quality private schools to lower-quality public universities. They also show BA attainment rates within four years declined by 1.7 percentage points, which is consistent with declining school quality on average worsening college outcomes.43 While the estimates in Cohodes and Goodman (2013) also could be driven by changes in family budgets and the fact that treated students are more likely to go to school closer to home and maintain their high school peer groups, they show evidence that it is the highest-scoring students whose BA attainment is most affected. Since these are the students who are most likely to experience a decline in college quality due to the scholarship, their results are consistent with an important role for college quality in driving college completion.

5.3.2 Graduation and Fit

This research on the graduation effects of college quality examines average effects, but average effects may not be relevant for all students if there is significant mismatch. Several papers in the literature have examined the empirical relevance of “mismatch,” particularly along racial/ethnic lines. Loury and Garman (1995) provide one of the first analyses of the effect of mismatch amongst

43The finding that state merit aid reduces BA attainment is far from universal in this literature. Fitzpatrick and Jones (2013) and Sjoquist and Winters (2012) find that the implementation of a state merit aid program does not affect graduation rates, while Scott-Clayton (2011) shows positive effects of state merit aid on collegiate attainment.
whites and blacks using data from the NLS72. Using selection-on-observables models that attempt to control for selection using SAT scores, parental income and education, and student demographic variables, they examine whether black and white students are more or less likely to graduate if they are “better matched” to their college in terms of their own SAT score being closer to the college median. Consistent with Bound, Lovenheim and Turner (2010), they find college quality has a sizable average impact on the likelihood of obtaining a BA for both blacks and whites, but lower-SAT whites and blacks both are less likely to graduate when they attend a higher-SAT school. This penalty is particularly large for black students. The authors interpret these results as evidence of mismatch, as less academically prepared students are less likely to get a four year degree when they attend a higher resource school, despite the higher level of resources they experience there.

Light and Strayer (2000, 2002) provide some additional evidence on the extent of mismatch using data from the NLSY79. They model college graduation as a two-stage process: in the first stage, students decide whether to go to college and which college type to attend, and in the second stage they make a graduation decision. They estimate these two stages simultaneously and allow for correlations of the error terms across equations. This method explicitly allows for unobservables to influence both enrollment and completion. The results from Light and Strayer (2000) show that the predicted likelihood of graduation among the lowest-quartile AFQT students declines monotonically as college quality increases. As student academic ability rises, this pattern largely reverses. These results again suggest that policies that induce less-academically prepared students to attend higher-quality schools might be counter-productive in terms of graduation. In a related paper using similar methods, Light and Strayer (2002) show evidence that black students are less likely to graduate from college than white students even though black students are more evenly distributed across the distribution of college quality. They argue their results are driven by affirmative action policies that generate mismatch between the unobservable academic ability of minority students and the quality
of school they attend.

5.3.3 Evidence from Affirmative Action Bans

The recent affirmative action bans make it possible to directly test how affirmative action affects graduation rates. Hinrichs (2012) examines the effect of affirmative action bans that were enacted in California (1998), Florida (2001), Texas (1997) and Washington (1999). Using American Community Survey data from 2005-2007 that links each respondent to whether an affirmative action ban was in place in his state of birth when he was 18, Hinrichs (2012) estimates difference-in-difference models that examine how ban enactment change the BA attainment rate of minority students. He finds no effect: his preferred specification produces a coefficient on the ban that is small in absolute value and is not statistically significant. His estimates are precise enough that he can rule out effects larger than 0.8 of a percentage point (or 7% relative to the sample mean) decline in BA attainment rates. In followup papers, Backes (2012) and Hinrichs (2013) examine the question of how affirmative action bans affect completion using institutional data from IPEDS. Backes (2012) examines two additional states, Georgia (2002) and Michigan (2004), focusing on six-year graduation rates at public schools. He finds a significant negative graduation effect on the share of public school graduates who are black, but the magnitude is very small. Hinrichs (2013) examines both four and six-year graduation rates, where the dependent variable is the share of blacks (or Hispanics) who graduated from a particular institution. Considering all institutions, no negative effects were found for either blacks or Hispanics. Backes (2012) and Hinrichs (2013) also look at the share of graduates of particular races at selective colleges. Consistent with the findings on enrollment, the share of graduates who are under-represented minorities at selective colleges falls.

44 A potential issue with using IPEDS for this question is that some minority students may react to a ban by attending college out of state.

45 There is some ambiguity about how to treat Georgia’s affirmative action policy change, as only the University of Georgia eliminated racial admissions preferences.

46 Note that by focusing on public schools a possible substitution from public to private schools that can still use affirmative action is ignored.
Cortes (2010) analyzes the effect of the Texas affirmative action ban using data from six public universities of differing quality in Texas. In particular, her data contain the two flagship universities in Texas as well as a set of less-selective public schools and two private schools. The identification strategy employed is to compare changes in six-year graduation rates among those in the top decile of their high school class to changes among lower-ranked students in a difference-in-difference framework. The argument for this methodology is based on the fact that the Texas Top 10% rule guaranteed admissions to any public Texas university for students in the top 10% of her high school class, and students in the top 10% were highly likely to be admitted to Texas A&M or UT-Austin prior to the affirmative action ban. The results indicate that, after the ban, minority students in Texas were between 2.7 and 4.0 percentage points less likely to earn a BA within six years. However, these effects are due predominantly to an increase in graduation rates among those in the top decile (who are assumed to be untreated by the ban) rather than a decline among lower-ranked students. This pattern is more consistent with the top 10% rule positively impacting top-decile students than with the affirmative action ban driving a decline in completion rates for lower-ranked students.

Arcidiacono, Aucejo, Coate, and Hotz (2013) examine how the affirmative action ban in California affected five-year graduation rates, paying particular attention to issues of the match between the student and the school. They show graduation rates for under-represented minorities in the UC system increased by over four percentage points after the ban. They then decompose this change into three parts: improvement in the fit between the student and the school, selection into the UC system as minorities were a smaller share of the student body after the ban, and gains due to universities responding to the ban by changing how academic preparation translates into graduation. Their model allows the returns to academic preparation to vary across campuses, consistent with Figure 1. The results show patterns consistent with the bottom panel of Figure 1: the most selective

47 We discuss the Texas top 10% rule as well as other related “percent plans” as a replacement for affirmative action in Section 6.
schools have the highest graduation rates for the most prepared students, while the least selective
schools in the system had the highest graduation rates for the least prepared students. Reshuffling
minority students within the system according to their sorting patterns after the ban results in
graduation gains for minority students between 0.1 and 1.2 percentage points, depending on the
controls for selection.\footnote{The smallest results are for the baseline case that only controls for selection on observables. Larger results are found when controls similar to those used in Dale and Krueger (2002) are used. See Section 5.5 for a discussion of Dale and Krueger (2002).} Substantially higher gains are found for those in the bottom quartile of the
minority preparation distribution, where the resulting improvements in fit improve graduation rates
by between 0.8 and 2.2 percentage points. At the same time, these students are also the ones most
likely not to be admitted to any school in the system in the presence of a ban.

The results of Arcidiacono, Aucejo, Coate, and Hotz (2013) also suggest that universities may
respond to affirmative action bans by focusing more resources on ensuring that the minority students
they do have actually graduate. Their lower bound estimates suggest that, conditional on both
observed and unobserved ability, students had significantly higher probabilities of graduating after
the ban. Antonivics and Backes (2014) show further evidence of endogenous institutional responses
to affirmative action bans. In the UC system, one of the responses to the ban was to adjust
the admissions weights placed on different background characteristics in diversity-enhancing ways.
Universities also may adjust how they recruit students and how they invest in students conditional
on arrival, as occurred in Texas with the Century and Longhorn scholarship programs that were
implemented post-\textit{Hopwood}.\footnote{See Andrews, Ranchhod and Sathy (2010) for a description of these programs and their effect on minority enrollment.} Such changes may provide additional support for minority students
at more elite schools after affirmative action bans are implemented.

Fit seems to be more important as the graduation window shortens. Arcidacono, Auecjo, and
Hotz (2013) show that minority four-year graduation rates in the UC system are highest at UC
Santa Cruz despite minorities at UC Santa Cruz having substantially worse academic backgrounds.
than those at places like UC Berkeley and UCLA. This pattern does not show up in the raw data for five-year graduation rates, suggesting that mismatch may affect time to degree as well as completion rates. Arcidiacono and Koedel (2013) examine eight-year graduation rates in the Missouri system. While there is some evidence that fit matters when comparing the most-selective schools in the system to moderately selective schools, there are a set of schools at the bottom of the quality distribution that appear to be worse for all students. This may be the result of schools at the bottom of the distribution being vertically differentiated or because of the wide graduation rate window considered in this study.

In sum, the evidence seems to suggest that 1) increasing college quality positively affects graduation rates on average, 2) these positive effects turn negative for those with relatively low levels of academic preparation, and 3) affirmative action bans have had little effect on the overall graduation rates of minority students. These results are consistent with offsetting influences of college quality and mismatch. Given that more selective schools have an overall positive effect on graduation, racial preferences that are milder than those currently in place, at least at the very best schools, could result in higher graduation rates for minority students, taking advantage of the higher resources associated with more selective schools without being so aggressive such that mismatch degrades educational outcomes. However, the estimated graduation gains from milder preferences at the best schools are small. As Arcidiacono and Koedel (2013) note, substantially higher gains could be achieved by moving minority students out of the very bottom schools.

5.4 Choice of major

Many studies have documented substantial differences in the monetary returns to different majors. Relatively few studies have analyzed how the fit between the student and the school affects one’s choice of major, however, but it is here where fit may be the most important. This is in part due

50 See Altonji, Blom, and Meghir (2012) for a recent review.
to the very different demands placed on students in different majors. Majors in STEM (science, technology, engineering, and math) as well as in economics have very different grading distributions (Sabot and Wakeman-Linn 1991, Johnson 2003) and are associated with more study time (Brint, Cantwell, and Saxena 2012, Stinebrickner and Stinebrickner 2011).

Differences in grading standards and study time have disproportionate effects on those who are at the bottom of the preparation distribution. Within colleges, there is massive sorting surrounding who persists in majors in the sciences, with those who have higher SAT scores (and in particular SAT math scores) being much more likely to persist in the sciences (Arcidiacono 2004, Arcidiacono, Aucejo, Hotz 2013).

Since affirmative action results in minority students being relatively less-prepared than their majority counterparts within a given school, differences in expectations across fields can result in minorities shifting away from the sciences over the course of their college career. Using data on Duke students, Arcidiacono, Aucejo, and Spenner (2012) showed that, conditional on gender, African Americans were more likely than white students to have an initial major in the sciences. However, their probability of finishing a major in the sciences was much lower. For example, of those who expressed an initial interest in the sciences, 54% of African American males finished in the humanities or social sciences compared to 8% of white males. Arcidiacono, Aucejo, and Spenner show that this entire racial gap can be accounted for by controlling for academic background: there are no differences in major switching patterns across races once one accounts for differences in academic background.

What the Arcidiacono, Aucejo, and Spenner study cannot do is say whether the African American students at Duke would have been more likely to persist in science majors had they attended a less-selective school. That is, is it relative preparation or absolute preparation that matters for obtaining a science degree? Smyth and Mcardle (2004) use the College & Beyond data and estimate models

51 This is the same data used in Bowen and Bok’s seminal book The Shape of the River and in Dale and Krueger
of graduating in a science field, controlling both for the difference between the individual’s SAT math score and the average SAT score of their school as well the average SAT score of the school itself.52 Smyth and McArdle (2004) find support for relative preparation mattering for attaining a STEM degree: the total effect of college quality (the direct effect and the effect through relative preparation) on STEM attainment is negative.

Arcidiacono, Aucejo, and Hotz (2013) also explore the issue of institutional fit but allow sufficient flexibility such that better students may see higher probabilities of graduating in the sciences at better schools. That is, it is not a requirement that increasing school quality lowers the probability of majoring in science fields for all students. They use data from the cohorts of students applying to the University of California system between 1995 and 1997. These data show substantial within-school gaps in SAT scores between minority students who start in the sciences and finish in the sciences and minority students who start in the sciences but finish outside of the sciences, gaps that are much smaller for majority students.53 For example, at UC Berkeley the gap is 105 points for minority students and only 21 points for majority students. The probability of graduating with a science degree conditional on starting in the sciences at UC Berkeley is 61\% for majority students, but just over half that (31\%) for minority students.

Graduating in the sciences with a low SAT score is difficult at UC Berkeley, but would these same students have a higher probability of graduating in the sciences from a school like UC Riverside? The answer appears to be yes. Denote the median SAT score for minorities at Berkeley as A. The minority students below this score who are interested in the sciences have a five-year graduation rate

52 Smyth and McArdle’s study was motivated by Elliot et al. (1996), who examine data from eleven colleges of varying selectivity. At each of the schools in their data, individuals who graduate are divided by their tercile of the school’s SAT math score distribution. They find that the share of science degrees awarded to each tercile was very similar across institutions despite large differences in the average SAT math scores of the schools, with the top tercile generally producing over half the science graduates. While more selective schools also produced more science graduates overall, the net effect is still that attending a less-selective institution makes persisting in the sciences more likely. A caveat with this study is that it focuses on college graduates, and dropout rates may differ across the institutions.

53 Finishing in the sciences and graduation probabilities both refer to five-year graduation rates.
in the sciences of 13%. Now consider minority students at Riverside, again with an initial interest in the sciences, who have SAT scores below A.54 Their five-year graduation rate in the sciences is 20%, despite likely having lower SAT scores overall and likely having a worse academic record.55

Arcidiacono, Aucejo and Hotz estimate a model of major choice, controlling for some observed preparation measures as well as Dale and Krueger (2002) controls, where schools differ in their major-specific returns to academic preparation. Hence, as in Figure 1, it is possible for the most-prepared students to be best matched at the most-selective schools and less-prepared students to be best matched at less-selective schools. Estimates of the model reveal exactly this pattern. After accounting for selection, the vast majority of minority students, who are coming in with significantly worse preparation than their majority counterparts, would have higher graduation probabilities in the sciences had they attended a less-selective school in the UC system. On the other hand, majority students are generally well-matched: a much smaller share would see higher graduation probabilities in the sciences had they attended a less-selective school.

Note that the studies discussed above have focused on selective schools. Arcidiacono (2004, 2005) both analyze the choice of college and major using the NLS72 data set and come to a different conclusion on how college quality and the choice of major interact. Namely, increasing college quality makes majoring in the sciences more attractive. There are two reasons why we do not put as much weight on these studies in how college quality interacts with major choice, at least when it comes to affirmative action. First, because these studies were using a national data set, more structure had to be placed on how college quality and major choice interacted. Hence, in these papers increasing college quality was constrained to make particular majors more or less attractive for \textit{all} students as opposed to allowing for the complementarities discussed in Section 2. As the discussion of Arcidiacono, Aucejo, and Hotz (2013) suggests, mismatch only becomes an issue when5457\% of entering minority science majors at Riverside have SAT scores below A.55 Note that the overall graduation rate for this group is higher at Berkeley. Berkeley does an excellent job at graduating minority students, just not in the sciences.
one’s preparation is severely behind one’s peers.56 Second, there are no controls for intended major, and those who intend to major in the sciences are on average stronger students and therefore more likely to attend higher-quality colleges.

But it is possible that the difference in results are also partly driven by the national data used in Arcidiacono (2004, 2005). Arcidiacono and Koedel (forthcoming) find that the lowest-quality four-year institutions in the Missouri system have very few if any STEM majors. It may be the case that colleges are vertically differentiated at the bottom of the distribution, whereby better schools are better for everyone, and horizontally differentiated at the top distribution, where fit becomes more important. The affirmative action debate has typically focused on racial preferences at the very best institutions, but it may be most beneficial further down the quality distribution.

5.5 Labor Market Outcomes

Ultimately, when assessing the impact of affirmative action on minority students, we care about how their long-run life outcomes are affected. An important component of such outcomes is labor market performance, such as earnings, wages, and the likelihood of employment. Affirmative action will potentially affect labor market outcomes through its influence on the myriad of collegiate outcomes considered above: quality of schools attended, the likelihood of graduation, and choice of major. Affirmative action policies also could have direct effects on labor market outcomes that work through employer beliefs. As shown by Coate and Loury (1993), affirmative action can lead to employers developing “negative stereotypes” about minority workers that lower their returns to a given educational investment. In equilibrium, employers will believe minority workers to be less productive, will pay them less, and will thus lower the incentive for these workers to invest in labor market skills (including education). If employers develop beliefs about worker productivity that are

56Note then that it is not just a matter of being a small fish in a big pond as Gladwell (2013) suggests, but how well one is prepared for the material being taught.
a function of school attended and race, then such an equilibrium could arise due to affirmative action in the higher education market. Indeed, the concern that employers will treat under-represented minority workers from elite schools differently because of affirmative action is a core argument opponents of affirmative action adduce against these policies. Furthermore, affirmative action could have important distributional consequences for minority workers, with affirmative action bans potentially influencing wages amongst very high-skilled minorities.

The results from affirmative action bans discussed in Section 5.2. highlight that a primary effect of affirmative action on minority students is to induce higher rates of attendance at more elite schools. With little effect on overall graduation rates, the effect of affirmative action in admissions on earning will flow predominantly through the choice of major and college quality.

We begin our discussion by considering the returns to college quality in general. This is a growing area of research that has made many recent advances due to growing data quality that allow one to link students’ K-12 education records to higher education records and future earnings. As in the estimation of college quality effects on higher BA attainment rates, the struggle in all studies on the returns to college quality is to deal with the fact that students with higher pre-collegiate academic ability that is independently valued in the labor market are more likely to sort into higher-quality schools. Put differently, student sorting across the quality distribution of the higher education market is highly non-random, and even when the characteristics of students at different types of schools overlap we must still be concerned about why they wound up in different institutions and whether these differences are correlated with unobserved attributes that will drive labor market outcomes. The literature to date has used three methods to address this endogeneity concern: selection on observables, regression discontinuity using admissions rules, and matching based on students with similar application and admissions histories. We discuss each of these in turn below, and we also point interested readers to the thoughtful review provided in Hoxby (2009).
The largest group of studies uses student observable characteristics to control for the differences across students in underlying earnings potential across the higher education quality distribution. In early work on this question, Brewer, Eide and Ehrenberg (1999) use the rich demographic and pre-collegiate test score data in the NLS72 and High School and Beyond (HSB) data sets to estimate wage and earnings premiums for those who attend schools from different higher education sectors.57 Their results indicate that students attending a high-quality public university (defined as being most or highly competitive in the Barron’s ratings) earn as much as 25\% more than those attending a low-quality one (defined as being less- or non-competitive). In addition to the concern that there is selection on unobservable characteristics, such as student motivation, there is a concern that OLS models will produce misleading estimates because of limited overlap in the observable characteristics of students attending schools of differing quality.

If there was full sorting on background characteristics, then the only way to adjust for differences in background characteristics across schools would be to impose a potentially restrictive functional form assumption. This issue is taken up directly in Black and Smith (2004). They use the National Longitudinal Study of 1979, which similar to NLS72 and HSB, contains detailed background and pre-collegiate cognitive skill measures, and they estimate matching models that allow them to both assess the degree of common support across the distribution of college quality and to examine how sensitive the results are to excluding the non-overlapping set.58 Their results demonstrate a surprising amount of overlap in the propensity score distributions of the likelihood of being in the top versus the bottom quartile of college quality as a function of the observables. They find a sizable effect of college quality: going from the bottom to the top quartile of college quality increases wages by 14\% for men and 8\% for women.59 Although these estimates are difficult to compare with

57Note that the student need not graduate from college to be included in the sample.

58Black and Smith (2004) measure college quality using an index based on average faculty salaries in 1997, average SAT score of the entering class in 1990 and the average first-year retention rate in 1990. Black and Smith (2006) use a more extensive set of institutional characteristics to measure college quality, again showing significant college quality effects.

59These are similar to the OLS estimates, and for both men and women the effects grow substantially, to 25\% and
Brewer, Eide and Ehrenberg (1999) due to differences in the way they measure school quality and not separating public and private schools, they both indicate substantial returns to attending a higher-quality college.

Arcidiacono (2005) is the only study that links racial preferences in admissions to future earnings. Using data from the NLS72, he estimates a structural model where students first decide the set of colleges to which they will apply given expectations about their probabilities of admission, financial aid conditional on admission, enrollment and major choice decisions, and future earnings. Arcidiacono’s results on earnings show small returns to college quality as measured by the average SAT math score of the student body, particularly after allowing for the errors in the various parts of the model (applications, admissions, earnings, etc.) to be correlated. However, as pointed out by Black and Smith (2004, 2006), using only one noisy measure of college quality may bias downward the estimated returns.

Arcidiacono’s model is estimated in a regime where racial preferences are present. The structural parameter estimates are then used to forecast how black student decisions over applications, enrollment, and major choice would change if they faced the admission and/or financial aid rules of whites. The effects of removing racial preferences in admissions on expected black earnings, even among those most likely to attend a selective college, were negative but quite small. This is due to racial preferences in admissions having little effect on enrollment and the low estimated returns to college quality.

These results are based on older cohorts who graduated from college in the 1970s and 1980s. It thus is important to consider some more recent evidence. Long (2010b) shows suggestive evidence

16%, when the estimation sample is restricted to the “thick support region,” where students are most similar in terms of observables across school types.

60 Similar low returns, albeit with the same data set, are found in Arcidiacono (2004).

61 Arcidiacono (2005) finds slightly larger negative effects from removing racial preferences in financial aid as racial preferences in financial aid affect whether black students attend college at all. He estimates that the returns to college are significantly higher for blacks than whites given the same background characteristics. Racial preferences in financial aid have the added advantage that mismatch effects are unlikely to result.
that the returns to college quality has increased over time. He estimates the effect of college quality in the NLS72, HSB and NELS:88 surveys, and he shows that the effect on earnings of a one standard deviation increase in quality has grown from 2.6% to 4.8% across cohorts. However, this change was not statistically different from zero. Interestingly, the return to college quality for African American students in NELS:88 dropped to zero from the 7.5% estimate in HSB. Thus, the increasing returns do not appear to be uniformly distributed across students, and if the returns to quality have dropped for black students this has important implications for how affirmative action changes have affected the returns to education for this group.

Evidence from the most recent cohorts comes from Texas, where it is possible to link students’ K-12 records to higher education outcomes and labor market earnings starting from the 1994 high school graduating cohort (Andrews, Li and Lovenheim, 2012). Andrews, Li and Lovenheim (2012) is distinguished by the large volume of student high school test score controls that the longitudinal datasets used in other work do not have and by the large sample sizes that provide more statistical power. They estimate OLS models of the effect of UT-Austin and Texas A&M-College Station graduation on earnings relative to earnings from graduates at other four-year schools in Texas. These estimates are similar to those from prior work, suggesting an earnings premium from UT-Austin of 11.5% and from Texas A&M of 21%. For black and Hispanic students, however, the returns to UT-Austin are small, while the returns to Texas A&M are about 20%. Furthermore, they estimate quantile treatment effects that show how college quality shifts the earnings distribution. At UT-Austin, there is a wide distribution, with earnings at the top of the distribution shifting out much more than at the bottom. The effect of Texas A&M on the earnings distribution is much more constant. These results indicate that there is a substantial amount of heterogeneity in the returns to college quality, both across institutions and across the distribution of students within institutions. To the extent that this heterogeneity is correlated with race, it suggests caution in extrapolating the
mean earnings effects of college quality to different types of students. These results also underscore
the need for more direct evidence on how affirmative action affects the return to college and labor
market outcomes.

Overall, the evidence from studies that rely on student observable characteristics to account
for selection into schools of differing quality point towards significant effects of college quality on
earnings. However, there is much concern that despite the large volume of information contained
in the conditioning sets used, there still is residual selection on unobserved characteristics that
could exert an independent influence on labor market outcomes. Hoekstra (2009) takes a unique
approach to solving this identification problem by using an admission cutoff rule at a large flagship
university based on SAT scores and GPA. Students are assigned a score based on a combination
of SAT and GPA, and admission rules use a cutoff for each SAT-GPA combination that form the
basis of a regression discontinuity (RD) design. He shows that students attending the flagship
because they score just above the cutoff earn 25% more than those who do not attend because
they are just below. A complication with this study is that he does not observe what happened
to students who do not attend the flagship, so the counterfactual is difficult to assess. However,
in terms of affirmative action, this paper is relevant for two reasons. First, the effect is focused on
the students at the margin of being academically eligible for admission at a flagship university, and
under-represented minority students who are impacted by affirmative action rules are more likely
to be in this group. Second, the correct counterfactual when thinking about imposing stronger or
weaker admissions requirements is what students would do if not admitted. Thus, Hoekstra’s results
are highly applicable when attempting to predict the policy effect on earnings of imposing higher
admissions requirements for a marginally-admitted group.\footnote{Zimmerman (forthcoming) shows a similarly-sized effect on earnings using an admission cutoff rule for a low-selectivity school in Florida. This finding suggests that earnings returns to college are not limited to the high-quality schools, but we focus this discussion on the flagship and selective schools because these are the schools whose minority enrollments are most affected by affirmative action.}
The final method researchers have used to identify the effect of college quality on earnings is through a matching technique that compares earnings across students who attend different-quality universities but who applied to and were admitted to the same set of schools. Dale and Krueger (2002) were the first to implement this method using College & Beyond and NELS:88 data, and the motivation is that the student unobservable qualities one might be concerned about in the selection-on-observable studies are contained in the application and admission set. They show that once one conditions on the application and admissions sets, there is no evidence of an earnings return to college quality. This finding is re-confirmed in a follow-up study (Dale and Krueger, 2011), however both papers find sizable college quality effects for students from low-income families. To the extent under-represented minority students are more likely to be from lower-income families, these results suggest college quality may still be an important component of future earnings for this group. This methodology has several appealing attributes, most notably that it is comparing students who are very similar in terms of the types of schools they express a desire to attend and the types of schools to which they are academically eligible to attend. But, this method also has generated controversy because of the concern over what is driving the residual selection. That is, why do two different students who have identical choice sets choose schools of different quality? Some of the potential explanations could be the types of unobservables this model is designed to overcome (e.g., differences in student motivation). Or, there could be differences in match quality that are highly important in this context, driven by differences in schools’ focus in terms of academic area or other attributes students value. Finally, the differences in college quality within matched sets, particularly at the top of the quality distribution, tend to be small. It could be the case that the effects of college quality are non-linear in means, which could complicate comparisons across very similar schools.

Our conclusion from this literature is that, on the whole, the evidence supports the claim that there are significant returns to college quality. Even Dale and Krueger (2002) show sizable effects for
low-income students. The estimates are particularly large when examining the elite public schools, which typically are state flagship universities. Table 2 shows that these schools have substantially higher resources and higher graduation rates, both overall and for minority students. It is reasonable to conclude that these higher resources allow these schools to have a larger effect on human capital than lower-resource schools. A prediction that stems directly from this evidence and from the enrollment effects discussed in Section 5.2 is that affirmative action likely raises the earnings of minority students due to its importance in driving minority enrollment in selective universities and the substantial earnings returns that tend to follow. At the same time, this literature has not explored how the match between the school and the student affects the returns to college quality. These studies generally focus on earnings not conditional on graduation. Since college quality overall has a positive effect on graduation rates, this may be the channel through which it influences earnings. But as we saw in Section 5.3.1, higher graduation probabilities from attending a higher quality college may not result if the student is significantly underprepared relative to his peers.

6 Percent Plans as an Alternative to Affirmative Action

In the wake of court decisions and voter referendums eliminating affirmative action in higher education (see Table 1), states have been increasingly turning to “percent plans” in order to achieve diversity goals. Percent plans guarantee admission to a set of schools to students who are in the top \(X \) percent of their high school class. The idea behind such rules is that high schools tend to be ethnically and racially segregated, and so a percent plan will necessarily expand access to low-income minority students who are in heavily non-white schools. The most prominent percent plan is in Texas. The “Texas Top Ten Percent Rule” went into effect in 1998, and it guaranteed all students in the top 10% of their high school class automatic admission to any public college or university in

\[63\]

An exception is Andrews, Li and Lovenheim (2012), which examines college quality earnings premiums among graduates.
Texas. California also has an admission policy in which any student in the top 9% of their class or in the top 9% of students overall in the state are guaranteed admission to some University of California campus.64

In this section, we provide a brief overview of the evidence on how these percent plans affect student outcomes in terms of enrollment and graduation, and we discuss evidence on some of the unintended consequences of these rules that policymakers need to consider when deciding on whether to replace existing affirmative action policies with a percent plan. Most of the evidence comes from studying the Texas Top Ten Percent Rule, so we focus our discussion there. Kain, O’Brien and Jargowsky (2005) examine 8 cohorts of college students in Texas that span the pre-ban period, the two years the ban was in effect, and the Top Ten Percent Rule implementation period. They show that the enrollment declines among African Americans at UT-Austin and Texas A&M-College Station post-\textit{Hopwood} discussed in Section 5.2. were partially reversed after the Top Ten Percent Rule was implemented. However, black enrollment at the flagship schools still remained 14% below the pre-ban levels. Among Hispanic students, enrollments at UT-Austin fully recovered relative to pre-ban levels and at Texas A&M it remained at about 20% below the pre-ban level. Overall, the evidence suggests that the Texas Top 10% Rule went some way to undoing the declines in minority enrollment at Texas Flagship Universities after affirmative action was banned, but the recovery was not full, especially for African Americans. The enrollment patterns also show a large increase in white enrollment at these 3 schools, jumping 27% after the implementation of the Top 10% Rule.

Long (2004b) argues that enrollment trends are misleading because they are confounded by growing minority populations within the state. He performs simulations of enrollment probabilities

64The percent plan in California originally considered only those in the top 4% of their graduating class or in the top 12.5% of students in the state. These admission rules were changed for the incoming class of 2012. The within-school ranking in California is based on GPA, while the statewide rankings are based on an academic index, which is a weighted average of SAT/ACT score and high school GPA. Florida has a percent plan as well, called the \textit{Talented 20}. Under this plan, which was enacted in 2000, the top 20% of students in each high school class who complete a college preparatory curriculum are guaranteed admission to at least one of the public universities in Florida, but in practice this program does not bind.
using the NELS:88 survey and shows that percent plans are unlikely to affect minority enrollment for two reasons. First, most minority students in the top decile of their class are admitted to the state flagship anyways. Second, under-represented minority students are not concentrated enough in most areas and they are unlikely to be in the top portion of their high schools for this policy to have large effects on their enrollment patterns.

A source of variation that is increasingly being exploited to identify the effects of percent plans on students is the discontinuity in access to flagship universities that occurs just above the rank cutoff. This methodology is not subject to the criticisms outlined in Long (2004), but they do have the drawback that the estimates are only local to the specific cutoff. There are two studies that have used regression discontinuity methods to study the Texas Top Ten Percent Rule, and they come to somewhat different conclusions. Niu and Tienda (2010) use data from the Texas Higher Education Opportunity Project (THEOP), a state-representative, longitudinal survey of Texas public high school students that began in 2002. Class ranks were verified using transcripts among those who persist in the survey to the second follow-up. The main finding is a 12-14 percentage point increase in the likelihood of Hispanic students who are just over the 10 percent rank cutoff enrolling in one of the two Texas flagships. Students at predominantly minority schools also experience a jump of 14 percentage points in the likelihood of enrolling in a flagship at the cutoff. White students and students in majority white schools are unaffected, as are African American students. This evidence is consistent with the tabulations in Kain, O’Brien and Jargowsky (2005), which shows Hispanic enrollment at Texas flagships increased substantially after the Top Ten Percent rule was implemented relative to enrollment in the ban years.

Daugherty, Martorell and McFarlin (2012) examine how the cutoff not only affects whether students attend the flagship school, but also how it affects attendance patterns at other schools. They match 6 cohorts of students to a large, un-named district in Texas and estimate regression
discontinuity models using administrative data on class rank that is linked to college enrollment outcomes both within and outside of Texas. They show that, while being in the top ten percent increases the likelihood students enroll in a state flagship, it displaces enrollment in private and out-of-state universities. As a result, students just above and below the top ten percent cutoff experience the same level of college quality.65 Interestingly, they also find no effect on the likelihood of enrollment, even though the baseline enrollment rate in college is only 30\% in the study’s district (and is only 58\% among those in the top decile of class rank). This finding highlights the fact that percent plans are most likely to influence where students attend and not whether they attend, similar to affirmative action policies more generally.

In addition to the direct effects on which types of schools students attend, percent plans can have general equilibrium effects that often are not intended by policy makers. A prime example is found in Cullen, Long and Reback (2012), who show that upwards of 5\% of student transfers across high schools after the Top Ten Percent Rule was implemented were to improve their chances of being in the top 10\%. Not only does this strategic behavior reduce the high school quality students experience, it also can undo the effectiveness of the percent plan by displacing minority students with non-minority transfer students. Long, Saenz and Tienda (2010) show that the Top Ten Percent Rule expanded access to flagships geographically, with a large drop in the proportion of minority students from “feeder” schools and a higher percentage coming from rural towns and small cities. Thus, the percent plan in Texas altered the composition of minority students, the effects of which on the academic attainment of these students or on their peers at flagship universities currently is not known. In addition, percent plans can alter grading incentives placed on schools and/or specific teachers, can alter the distribution of resources in schools to students of different ability levels, and can affect student effort incentives for those close to the percentile cutoff. The existence and

65Daugherty, Martorell and McFarlin (2012) also highlight that they use class rank at the end of 11th grade, which is the relevant rank for college applications, while Niu and Tienda (2010) use the rank at the end of 12th grade. They show evidence that this difference can account for the different findings across the two studies.
extent of these effects on students and schools has not been studied previously, and we view these as important questions for future research.

7 Conclusion

Intense debate continues in the United States over the role of affirmative action in college and graduate school admissions. Although the Supreme Court has ruled that the constitutional basis for affirmative action must be rooted in schools’ preferences for a diverse student body, the original impetus for these policies and much of the resulting focus among policy-makers and researchers alike is on whether and how affirmative action “levels the playing field” between under-represented minority and white students. Of central importance, then, is how racial preferences in college and graduate school admissions influence students’ long-run educational and labor market outcomes, relative to a counterfactual of race-neutral admissions.

From a policy perspective, understanding the extent and effect of affirmative action policies is of primary importance. The literature clearly shows positive average effects of college quality on a host of outcomes. This suggests that mild racial preferences will have a positive impact on minority outcomes. The issue is whether racial preferences in their current form are so strong that mismatch effects may arise. At more selective undergraduate schools and among virtually all law schools, affirmative action is practiced extensively, particularly for African Americans, and leads to substantial differences in the academic backgrounds of minority and majority students. These differences are particularly striking in law schools, where the median black admit may have credentials that are below that of the first percentile of white admits.

As we argue throughout this paper, the net impact of racial preferences come down to whether the strength of the overall college quality effect is larger or smaller than any mismatch effects. It thus is essential to isolate the role of affirmative action-based mismatch, as if mismatch is dominant the
dual goals of affirmative action of generating a diverse student body and supporting the educational attainment of minority students may be at odds with one another. Large mismatch effects would support the need for more policy consideration of what the optimal amount of affirmative action is at different school types in order to balance the negative effects of mismatch with institutional diversity goals. Conversely, absent mismatch, these policy goals can be complementary.

The evidence suggests that racial preferences are so aggressive that reshuffling some African American students to less-selective schools would improve some outcomes if mismatch is present. The existing evidence we discuss indicates that such mismatch effects may be particularly relevant for first-time bar passage and among undergraduates majoring in STEM fields. However, shifting minority undergraduates to low-resource non-selective schools ultimately may undo any gains from higher match quality, and shifting minorities out of law schools altogether could lead to worse labor market outcomes among these students than had they been admitted to some law school. While much attention has been paid to racial preferences at the very best institutions, the benefits of racial preferences may be operating more at the bottom of the college quality distribution.

The past several decades have witnessed a revolution in data availability, with many states as well as the federal government making data available to researchers that permit one to follow students from their K-12 education, through college and into the workforce. These data sets have immense potential to inform most education policy debates, and using these data to study the effects of affirmative action on long-run outcomes would be quite fruitful. This paper outlines many of the gaps in our current knowledge and the difficulty in credibly disentangling the relevance of fit versus mismatch as they relate to affirmative action. We are hopeful that these longitudinal administrative data sets will allow us to gain new insights into the effects of affirmative action on minority educational and labor market outcomes in the near future.
References

Table 1: Affirmative Action Bans in Undergraduate Admissions by State

<table>
<thead>
<tr>
<th>State</th>
<th>Year of Enactment</th>
<th>Source of Ban</th>
</tr>
</thead>
<tbody>
<tr>
<td>Texas</td>
<td>1997*</td>
<td>Court Ruling: Hopwood v. Texas</td>
</tr>
<tr>
<td>California</td>
<td>1998</td>
<td>Voter Initiative (Prop. 209)</td>
</tr>
<tr>
<td>Washington</td>
<td>1999</td>
<td>Voter Initiative (Initiative 200)</td>
</tr>
<tr>
<td>Florida</td>
<td>2001</td>
<td>Executive Order 99-281</td>
</tr>
<tr>
<td>Georgia**</td>
<td>2002</td>
<td>Court Ruling: Johnson v. University of Georgia</td>
</tr>
<tr>
<td>Michigan***</td>
<td>2006</td>
<td>Voter Initiative (Proposition 2)</td>
</tr>
<tr>
<td>Arizona</td>
<td>2010</td>
<td>Voter Initiative (Proposition 107)</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>2012</td>
<td>Legislative Act (HB 623)</td>
</tr>
<tr>
<td>Oklahoma</td>
<td>2013</td>
<td>Voter Initiative (State Question 759)</td>
</tr>
</tbody>
</table>

* The affirmative action ban in Texas was overturned in 2003 by the 5th Circuit Court of Appeals.
** This ruling only affects the University of Georgia. The race-based admission system used was ruled unconstitutional, but other public institutions in Georgia still consider race in admissions.
*** In July 2011, the Michigan affirmative action ban was ruled unconstitutional by the 6th Circuit Court of Appeals. The case was argued in front of the Supreme Court in October 2013, but no decision has been made on the constitutionality of this law.

Table 2: Median Institutional Characteristics by College Quality Tier

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Flagship Public</th>
<th>Non-Flagship Public</th>
<th>Highly-Selective Private</th>
<th>Less-Selective Private</th>
</tr>
</thead>
<tbody>
<tr>
<td>Six-Year Graduation Rate</td>
<td>0.702</td>
<td>0.444</td>
<td>0.868</td>
<td>0.484</td>
</tr>
<tr>
<td>Black Six-Year Graduation Rate</td>
<td>0.598</td>
<td>0.333</td>
<td>0.810</td>
<td>0.333</td>
</tr>
<tr>
<td>Hispanic Six-Year Graduation Rate</td>
<td>0.670</td>
<td>0.393</td>
<td>0.818</td>
<td>0.417</td>
</tr>
<tr>
<td>White Six-Year Graduation Rate</td>
<td>0.715</td>
<td>0.460</td>
<td>0.869</td>
<td>0.514</td>
</tr>
<tr>
<td>Student-Faculty Ratio</td>
<td>11.59</td>
<td>13.84</td>
<td>6.36</td>
<td>13.48</td>
</tr>
<tr>
<td>Per-Student Expenditure</td>
<td>39,685</td>
<td>15,741</td>
<td>54,028</td>
<td>17,232</td>
</tr>
<tr>
<td>Per-Student Instructional Expenditure</td>
<td>12,081</td>
<td>6,054</td>
<td>20,478</td>
<td>5,433</td>
</tr>
<tr>
<td>Faculty Salaries</td>
<td>91,177</td>
<td>65,961</td>
<td>96,101</td>
<td>54,520</td>
</tr>
</tbody>
</table>

Source: 2011-2012 IPEDS data. The per-student expenditures and student-faculty ratios use all student enrollments, not just undergraduates. Faculty salaries and student-faculty ratios use all instructional staff, which includes non-tenure track lecturers.