Creation of a New Class of Cellulose Engineering Materials
Margaret Frey, leader; Juan Hinestroza (Cornell); John A. Cuculo, Richard Kotek (NC State)

As petroleum prices increase, interest in renewable polymers, including cellulose, also increases. Successful use of this rapidly renewable, abundant and biodegradable material will depend on development of processing methods to produce materials with properties comparable to current engineering materials. These processing methods must also be economically and environmentally advantageous. Since cellulose does not melt, it must be spun from solution. Initially, we developed a rapid and efficient process for forming cellulose solutions in the ethylene diamine/salt solvent system and demonstrated that solution properties can be varied by varying salt concentration and cellulose molecular weight.

Earlier dissolution methods had relied on freezing and thawing mixtures to achieve uniform solutions. By chilling the solvent to decrease dissolution rate and increasing shear in mixing, we could prepare solutions rapidly and consistently without freezing [see process protocol above]. All cellulose samples investigated, including cotton batting, microcrystalline cellulose and wood pulps, dissolved easily in the solvent.

Varying the salt content of the solutions created conditions where flowing solutions or stiff gels formed. Decreasing the salt content resulted in cellulose precipitating out of solution [see figure at right]. Adding water stabilized solutions at higher temperatures (up to 60°C). Additionally, rheological studies indicated that solution viscosity decreased with increasing cellulose concentration [see chart below]. This behavior is commonly observed in liquid crystalline solutions from which high modulus fibers can be spun, e.g. Kevlar®.

We have prepared fibers and films from cellulose/ethylene diamine/salt solutions by electrospinning. Methanol and ethanol were used as coagulants in film casting, wet spinning and dry-jet wet spinning, but water was not a good coagulant.

In ongoing research we will focus on increased understanding of the dissolution process. Powerful NMR experiments should help to determine the specific interactions between the three solution components: cellulose, ethylene diamine and salt. These experiments are expected to lead to improved dissolution and processing of the system. Fiber and film formation will continue, and efforts will be made to improve fiber and film properties by controlling processing parameters and coagulation kinetics. Additionally, we will conduct preliminary explorations using the ethylene diamine/salt solvent system as a homogeneous reaction media for cellulose. In homogeneous reaction media, functional chemicals can be attached to the cellulose polymer to create new materials.

Contributing Graduate Students: Min Xiao, Mr. Troy Gould (Cornell); Postdoc: Lei Li (Cornell).
Industry Interactions: 3; Government Interactions: 1; Non-NTC Academic Interactions: 3
Project Web Address: http://www.ntcresearch.org/projectapp/?project=M05-CR02

For Further Information:
Margaret W. Frey, the Lois and Mel Tukman Assistant Professor of Human Ecology at Cornell since 2002, earned a B.S. in chemical engineering at Cornell in 1985, an M.S. in fiber science at Cornell in 1989 and a Ph.D. on fiber and polymer science from NC State in 1995. She was previously a Manager of Material Development at Champlain Cable Corp. (1998-2002) and held technical positions at Johnson Filaments, Helene Curtis Ind. and TRI. Margaret received the SUNY Chancellors Award for Excellence in Teaching in 2005. Her research interests include electrospinning nanofibers from cellulose.

mfw24@cornell.edu
(607)-255-1937Cornell
http://www.human.cornell.edu/che/bio.cfm?netid=mfw24

Juan P. Hinestroza, an Assistant Professor of Fiber Science at Cornell, joined the faculty in 2005 from the faculty of NC State. Juan earned a B.S from Univ. Industrial de Santander (Colombia) and a Ph.D. from Tulane in 2002, both in chemical engineering. Prior to graduate school, Juan was a process control engineer for Dow Chemical. He is a recipient of the 2005 NYSTAR JDW Young Investigator Award. His research interests include directed self-assembly to tailor textile barrier properties as well as scanning probe microscopy to assess highly curved nanoscale surfaces.

jh433@cornell.edu
(607)-255-7600
http://www.human.cornell.edu/che/bio/jhinstroza

John A. Cuculo, a Professor Emeritus of Textile Engineering, Chemistry and Science at NC State, joined the faculty in 1968 after an 18-year career at DuPont. John earned a Sc.B. from Brown in 1946 and a Ph.D. in chemistry from Duke in 1950. His research interests include cellulose and high performance fibers from polyester fiber extrusion.

john_cuculo@ncsu.edu
(919)-515-6549
http://www.tx.ncsu.edu/faculty_center/directory/detail.cfm?id=28

Richard Kotek, an Assistant Professor in Textiles at NC State since 1999 following 12-years with BASF Corp, earned a M.S. in 1975 and his Ph.D. in 1979 from Lodz Polytechnic (Poland) followed by postdoctoral research at Duke Univ. His research interests include structure/property, processing, and synthesis of fiber forming polymers particularly polyamides, polyester and polypropylene for industrial applications.

rkotek@unity.ncsu.edu
(919)-515-6585
http://www.tx.ncsu.edu/faculty_center/directory/detail.cfm?id=65