Nanolayer Self-assemblies: Novel, Adaptable Fiber Surfaces
Juan P Hinestroza, Leader (Cornell), Peter Hauser (NCSU)

We are using electrostatic self-assembled nanolayers to add functionality to the surface of textile substrates without significantly altering the weight, bulk, or comfort of the modified textile. The benefits of utilizing electrostatic self-assembly include its: Flexibility, the properties of the modified textile can be tailored to a specific application through control of the number and composition of the self-assembled nanolayers; Compatibility, the process can be readily incorporated into existing textile manufacturing infrastructure; Durability, the method is particularly tolerant to defects, as the layered structures have the ability to self heal; and its Environmental Friendliness, the process is water-based—no expensive or hazardous solvents are necessary, no vacuum system is required, and large excesses of the polyelectrolyte solutions are unnecessary. Indeed, electrostatic self-assembly (ESA) is a revolutionary technique, which allows the precise deposition of functional polymers. The ability to control the composition of the coatings at the atomic level creates unique properties not possible using existing bulk fabrication processes. Moreover, the process is compatible with an almost unlimited number of materials including antimicrobial, conducting, light-emitting, light-absorbing, and color-changing polymers, as well as electromagnetic materials and a variety of nanoparticles including fullerenes and nanotubes.

Substrate Preparation
Substrate preparation: The first step in substrate preparation includes the creation of charged groups on the surface of these textile fibers. While anionic cotton and rayon can be produced with alkaline sodium chloroacetate, cationic cotton and rayon will be produced by reacting the fiber with 2,3-epoxypropyltrimethylammonium chloride. Anionic polyester, nylon and acrylic fibers as well as cationic nylon are commercially available.

The surface charge density is estimated by Zeta potential measurements and by adsorption of dyes of opposite charge. Furthermore, XPS and FTIR-Imaging will be performed in order to obtain chemical mapping of the functional groups and to estimate the charge density of the modified fabrics.

We are creating multifunctional textiles with nanoscale precision by depositing polyelectrolyte layers of 5-20 nanometer in thickness so the comfort of the fabric is not compromised.

Nanolayer Deposition
Nanolayer deposition: The deposition process involves the repeated sequential dipping of the charged textile fibers into the solutions of polycations, polyanions and charged nanoparticles with rinsing between each deposition step. The thickness of the individual nanolayers will be tuned at the molecular level by controlling the immersion time, ionic strength of the solution, the pH of the solution as well as the temperature. The list of polyelectrolytes chosen to modify the barrier properties of textile fibers include poly(allylamine hydrochloride), poly(diallyldimethylammonium chloride), poly(4-vinyl-N-hexylpyridinium bromide), sodium poly(styrene sulfonate), poly(4-vinylpyridine), poly(ethyleneimine), poly(vinylsulfate), poly(acrylic acid). Charged nanoparticles to be deposited include rigid ionic platelets such as exfoliated montmorillonite, hydrotalcite, hectorite, and graphite oxide. In addition, metallized and unmetallized direct, acid, and reactive dyes will be used. The presence of transition metal ions (e.g., Co, Cu, Fe) is anticipated to serve as sites for ligand interactions with...
ionic groups in the polymer layers, adding stability to the resultant assemblies.

Assessment of the Nanolayer deposition process: The structure, quality and stability of the nanolayers deposited over textile fibers will be assessed as follows. High Resolution Scanning Electron Microscopy will be used to verify the homogeneity and quality of the nanolayer ensembles. Atomic Force Microscopy AFM and X-ray Photoelectron Spectroscopy will be used to characterize the structure of the nanolayers as well as to determine the arrangement of the ionic platelets, and the possible overlapping due to their high aspect ratio. The analytical instrumentation to be used is currently available at the Cornell Center for Materials Research CCMR and the Cornell Nanobiotechnology Center.

Future work
Absorption, diffusion and permeability tests will be performed on the modified fibers in order to determine the effect of the nanolayers on their barrier and permeability properties. Absorption characteristics of these materials will be determined by gravimetric and volumetric techniques using a dynamic mechanical analyzer equipped with immersion capabilities. Diffusion coefficients will be determined by using a modified permeation apparatus developed by the PI and by means of ASTM D1434 gas permeation cell.

The modified textiles will be evaluated with test methods from the American Association of Textile Chemists and Colorists (AATCC). Color changes, wash fastness, light fastness, and other changes in appearance will be measured before and after laundering. The unique properties provided by the nanolayers will also be revaluated after laundering.

We will perform a scale-up engineering analysis in order to determine the critical parameters required to implement ESA as a novel textile finishing technique. Geometric, kinematics and dynamic similarity principles as well as dimensional analysis techniques will be used. The goal of this task is to determine optimum values for non-dimensional parameters such as Prandtl, Schmidt, Strouhal, Peclet and Sherwood numbers that will correlate mass transfer coefficients, polyelectrolyte concentration, charge density of the substrates, temperature and residence times with nanolayer thickness and uniformity. This fundamental engineering analysis will provide valuable information that can accelerate the introduction of ESA as a novel finishing technique at existing textile manufacturing facilities.

Other Contributors: Graduate Students: Scarlet Wang, (NC State), Christina Diaz (Cornell) Industry Interactions: Goulston Inc.,

Project Web Address: http://www.ntcresearch.org/projectapp/?project=F06-CR02

For Further Information:

Juan P. Hinestroza, an Assistant Professor of Textile Engineering Chemistry and Science at NC State, joined the faculty from a postdoc at Tulane Inst. for Macromolecular Engineering and Science. He earned a Ph.D. in chemical engineering from Tulane in 2002. Prior to graduate school, Juan was a process control engineer for Dow Chemical. His research interests include developing permselective block copolymers, inorganic-organic nano-composites and electrostatic nanolayer assemblies as barrier materials to protect clothing against chemical and biological agents and developing models to describe transport phenomena in protective clothing ensembles.

jh433@cornell.edu
(607)-255-7600
http://www.human.cornell.edu/che/bio/jhinestroza

Peter J. Hauser, a Professor of Polymer and Color Chemistry at NC State, joined the faculty in 1997 after a 23-year industrial research career with Milliken, Burlington and Virkler Co. He received a B.S. in 1969 and a Ph.D. in 1974 in chemistry from NC State. Peter's research interests include high performance chemical finishes for enhanced value textiles, indigo dyeing and denim garment wet processing, mathematical modeling of textile wet processes and new textile processes to reduce costs, energy usage and pollution associated with textile wet processing. C98-S01, C98-S04, C99-S09, C01-NS08, C04-NS0, F06-CR02

peter_hauser@ncsu.edu
(919)-513-1899
http://www.tx.ncsu.edu/faculty_center/directory/detail.cfm?id=47